Anna Christina Nobre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Right place, right time: Spatiotemporal predictions guide attention in dynamic visual search Journal of Experimental Psychology: General, 2022, 151, 348-362.	1.5	13
2	Multiple spatial frames for immersive working memory. Nature Human Behaviour, 2022, 6, 536-544.	6.2	27
3	The future of human behaviour research. Nature Human Behaviour, 2022, 6, 15-24.	6.2	28
4	Be there on time: Spatialâ€ŧemporal regularities guide young children's attention in dynamic environments. Child Development, 2022, 93, 1414-1426.	1.7	4
5	Eyes wide open: Regulation of arousal by temporal expectations. Cognition, 2022, 224, 105062.	1.1	9
6	Transient beta activity and cortico-muscular connectivity during sustained motor behaviour. Progress in Neurobiology, 2022, 214, 102281.	2.8	14
7	Consequences of predictable temporal structure in multi-task situations. Cognition, 2022, 225, 105156.	1.1	7
8	Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention. Nature Communications, 2022, 13, .	5.8	49
9	Superior short-term memory in APOE ε2 carriers across the age range. Behavioural Brain Research, 2021, 397, 112918.	1.2	2
10	Temporal orienting in Parkinson's disease. European Journal of Neuroscience, 2021, 53, 2713-2725.	1.2	7
11	When Natural Behavior Engages Working Memory. Current Biology, 2021, 31, 869-874.e5.	1.8	54
12	EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python. Journal of Open Source Software, 2021, 6, 2977.	2.0	66
13	Output planning at the input stage in visual working memory. Science Advances, 2021, 7, .	4.7	46
14	Looking ahead in working memory to guide sequential behaviour. Current Biology, 2021, 31, R779-R780.	1.8	21
15	Toward a neurobiology of internal selective attention. Trends in Neurosciences, 2021, 44, 513-515.	4.2	13
16	Rhythmic Modulation of Visual Perception by Continuous Rhythmic Auditory Stimulation. Journal of Neuroscience, 2021, 41, 7065-7075.	1.7	14
17	Gender bias in academia: A lifetime problem that needs solutions. Neuron, 2021, 109, 2047-2074.	3.8	106
18	Revealing the Dynamic Nature of Amplitude Modulated Neural Entrainment With Holo-Hilbert Spectral Analysis. Frontiers in Neuroscience, 2021, 15, 673369.	1.4	10

#	Article	IF	CITATIONS
19	Decoding visual colour from scalp electroencephalography measurements. NeuroImage, 2021, 237, 118030.	2.1	26
20	20 years of temporal orienting: an introduction. Journal of Vision, 2021, 21, 41.	0.1	0
21	Spatial-temporal predictions in a dynamic visual search. Journal of Vision, 2021, 21, 39.	0.1	1
22	Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics. Journal of Neurophysiology, 2021, 126, 1190-1208.	0.9	24
23	Shielding working-memory representations from temporally predictable external interference. Cognition, 2021, 217, 104915.	1.1	18
24	Reduced cortico-muscular beta coupling in Parkinson's disease predicts motor impairment. Brain Communications, 2021, 3, fcab179.	1.5	6
25	Under the Mind's Hood: What We Have Learned by Watching the Brain at Work. Journal of Neuroscience, 2020, 40, 89-100.	1.7	10
26	Dissecting beta-state changes during timed movement preparation in Parkinson's disease. Progress in Neurobiology, 2020, 184, 101731.	2.8	25
27	Comparing the prioritization of items and feature-dimensions in visual working memory. Journal of Vision, 2020, 20, 25.	0.1	19
28	Goal-directed and stimulus-driven selection of internal representations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24590-24598.	3.3	44
29	Purpose-Dependent Consequences of Temporal Expectations Serving Perception and Action. Journal of Neuroscience, 2020, 40, 7877-7886.	1.7	18
30	The Oxford Brain Health Centre: Embedding dementia research in clinical practice. Alzheimer's and Dementia, 2020, 16, e044907.	0.4	0
31	Short-term memory advantage for brief durations in human APOE ε4 carriers. Scientific Reports, 2020, 10, 9503.	1.6	18
32	Synchronisation of Neural Oscillations and Cross-modal Influences. Trends in Cognitive Sciences, 2020, 24, 481-495.	4.0	59
33	One Thing Leads to Another: Anticipating Visual Object Identity Based on Associative-Memory Templates. Journal of Neuroscience, 2020, 40, 4010-4020.	1.7	15
34	Temporal Expectations Prepare Visual Working Memory for Behavior. Journal of Cognitive Neuroscience, 2020, 32, 2320-2332.	1.1	20
35	Functional biases in attentional templates from associative memory. Journal of Vision, 2020, 20, 7.	0.1	5
36	Multiple reference frames for oculomotor contributions to visual working memory in an immersive and unconstrained virtual reality environment. Journal of Vision, 2020, 20, 526.	0.1	0

#	Article	IF	CITATIONS
37	Temporal regularities guide spatial attention in young children. Journal of Vision, 2020, 20, 1050.	0.1	1
38	The association between visual working and long-term memory in apolipoprotein E (APOE) e4 carriers and non-carriers. Journal of Vision, 2020, 20, 1121.	0.1	0
39	Orienting attention in short-term and long-term memory across ageing. Journal of Vision, 2020, 20, 1137.	0.1	2
40	Prospective action imprinting into visual working memory. Journal of Vision, 2020, 20, 1017.	0.1	0
41	Proactive memory-guided attentional templates are flexibly weighted across feature dimensions. Journal of Vision, 2020, 20, 796.	0.1	0
42	The cost of utilizing working memory under natural constraints. Journal of Vision, 2020, 20, 1034.	0.1	0
43	Encoding-related brain activity and accelerated forgetting in transient epileptic amnesia. Cortex, 2019, 110, 127-140.	1.1	10
44	Dynamic sustained attention markers differentiate atypical development: The case of Williams syndrome and Down's syndrome. Neuropsychologia, 2019, 132, 107148.	0.7	9
45	Biomagnetic biomarkers for dementia: A pilot multicentre study with a recommended methodological framework for magnetoencephalography. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 450-462.	1.2	24
46	Dissociable Catecholaminergic Modulation of Visual Attention: Differential Effects of Catechol-O-Methyltransferase and Dopamine Beta-Hydroxylase Genes on Visual Attention. Neuroscience, 2019, 412, 175-189.	1.1	17
47	Modulation of the pupillary response by the content of visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22802-22810.	3.3	42
48	Premembering Experience: A Hierarchy of Time-Scales for Proactive Attention. Neuron, 2019, 104, 132-146.	3.8	84
49	Rhythmic Temporal Expectation Boosts Neural Activity by Increasing Neural Gain. Journal of Neuroscience, 2019, 39, 9806-9817.	1.7	39
50	Introduction. Neuropsychologia, 2019, 128, 1.	0.7	0
51	The tempos of performance. Current Opinion in Psychology, 2019, 29, 254-260.	2.5	17
52	Time for What? Breaking Down Temporal Anticipation. Trends in Neurosciences, 2019, 42, 373-374.	4.2	23
53	Whole-brain white matter organization, intelligence, and educational attainment. Trends in Neuroscience and Education, 2019, 15, 38-47.	1.5	33
54	Human gaze tracks attentional focusing in memorized visual space. Nature Human Behaviour, 2019, 3, 462-470.	6.2	98

#	Article	IF	CITATIONS
55	Neural markers of category-based selective working memory in aging. NeuroImage, 2019, 194, 163-173.	2.1	4
56	The Functional Consequences of Social Attention for Memory-guided Attention Orienting and Anticipatory Neural Dynamics. Journal of Cognitive Neuroscience, 2019, 31, 686-698.	1.1	3
57	The Oxford study of Calcium channel Antagonism, Cognition, Mood instability and Sleep (OxCaMS): study protocol for a randomised controlled, experimental medicine study. Trials, 2019, 20, 120.	0.7	17
58	Punishment-related memory-guided attention: Neural dynamics of perceptual modulation. Cortex, 2019, 115, 231-245.	1.1	7
59	The functional consequences of social attention on memory precision and on memory-guided orienting in development. Developmental Cognitive Neuroscience, 2019, 36, 100625.	1.9	7
60	Unpacking Transient Event Dynamics in Electrophysiological Power Spectra. Brain Topography, 2019, 32, 1020-1034.	0.8	48
61	Dissociable effects of the apolipoprotein-E (APOE) gene on short- and long-term memories. Neurobiology of Aging, 2019, 73, 115-122.	1.5	19
62	Temporally Unconstrained Decoding Reveals Consistent but Time-Varying Stages of Stimulus Processing. Cerebral Cortex, 2019, 29, 863-874.	1.6	46
63	Differential Effects of Salient Visual Events on Memoryâ€Guided Attention in Adults and Children. Child Development, 2019, 90, 1369-1388.	1.7	10
64	Changing interpretations of emotional expressions in working memory with aging Emotion, 2019, 19, 1060-1069.	1.5	3
65	Emotional distraction in the context of memory-based orienting of attention Emotion, 2019, 19, 1366-1376.	1.5	3
66	Concurrent visual and motor selection during visual working memory guided action. Nature Neuroscience, 2019, 22, 477-483.	7.1	109
67	Human gaze tracks the focusing of attention within the internal space of visual working memory. Journal of Vision, 2019, 19, 133b.	0.1	7
68	Item-based and feature-based selection in working memory. Journal of Vision, 2019, 19, 270d.	0.1	0
69	Right time, right place: implicit learning of target onsets in a visual search task. Journal of Vision, 2019, 19, 255b.	0.1	1
70	Neural indices of proactive target templates. Journal of Vision, 2019, 19, 247c.	0.1	0
71	The association between visual working and long-term memory across normal ageing. Journal of Vision, 2019, 19, 73c.	0.1	0
72	Building on a Solid Baseline: Anticipatory Biases in Attention. Trends in Neurosciences, 2018, 41, 120-122.	4.2	4

#	Article	IF	CITATIONS
73	Decoding the influence of anticipatory states on visual perception in the presence of temporal distractors. Nature Communications, 2018, 9, 1449.	5.8	48
74	Increased cerebral functional connectivity in ALS. Neurology, 2018, 90, e1418-e1424.	1.5	26
75	APOE genotype and cognition in healthy individuals at risk of Alzheimer's disease: AÂreview. Cortex, 2018, 104, 103-123.	1.1	135
76	Impaired corticomuscular and interhemispheric cortical beta oscillation coupling in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 1479-1489.	0.7	36
77	Mood instability and reward processing: daily remote monitoring as a modern phenotyping tool for bipolar disorder. European Neuropsychopharmacology, 2018, 28, S87.	0.3	1
78	Preventing intrusive memories after trauma via a brief intervention involving Tetris computer game play in the emergency department: a proof-of-concept randomized controlled trial. Molecular Psychiatry, 2018, 23, 674-682.	4.1	175
79	Methylphenidate enhances implicit learning in healthy adults. Journal of Psychopharmacology, 2018, 32, 70-80.	2.0	12
80	Temporal alignment of anticipatory motor cortical beta lateralisation in hidden visualâ€notor sequences. European Journal of Neuroscience, 2018, 48, 2684-2695.	1.2	28
81	Anticipated moments: temporal structure in attention. Nature Reviews Neuroscience, 2018, 19, 34-48.	4.9	401
82	Early Behavioural Facilitation by Temporal Expectations in Complex Visual-motor Sequences. Neuroscience, 2018, 389, 74-84.	1.1	3
83	Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nature Communications, 2018, 9, 2987.	5.8	270
84	Neural Oscillations: Sustained Rhythms or Transient Burst-Events?. Trends in Neurosciences, 2018, 41, 415-417.	4.2	142
85	Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults. NeuroImage, 2018, 178, 46-56.	2.1	35
86	Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling. Frontiers in Neuroscience, 2018, 12, 603.	1.4	137
87	Not All Predictions Are Equal: "What―and "When―Predictions Modulate Activity in Auditory Cortex through Different Mechanisms. Journal of Neuroscience, 2018, 38, 8680-8693.	1.7	69
88	Benefits of flexible prioritization in working memory can arise without costs Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 398-411.	0.7	42
89	Magnetoencephalography as a Tool in Psychiatric Research: Current Status and Perspective. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 235-244.	1.1	29
90	Feature-based attentional weighting and spreading in visual working memory. Scientific Reports, 2017, 7, 42384.	1.6	37

#	Article	IF	CITATIONS
91	Prioritizing Information during Working Memory: Beyond Sustained Internal Attention. Trends in Cognitive Sciences, 2017, 21, 449-461.	4.0	275
92	Cognitive Training in the Elderly: Bottlenecks and New Avenues. Journal of Cognitive Neuroscience, 2017, 29, 1473-1482.	1.1	30
93	Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations. Journal of Neuroscience, 2017, 37, 437-445.	1.7	108
94	The Cumulative Effects of Predictability on Synaptic Gain in the Auditory Processing Stream. Journal of Neuroscience, 2017, 37, 6751-6760.	1.7	52
95	Sex and APOE: A memory advantage in male APOE ε4 carriers in midlife. Cortex, 2017, 88, 98-105.	1.1	34
96	Competitive interactions affect working memory performance for both simultaneous and sequential stimulus presentation. Scientific Reports, 2017, 7, 4785.	1.6	16
97	Differences between endogenous attention to spatial locations and sensory modalities. Experimental Brain Research, 2017, 235, 2983-2996.	0.7	5
98	Temporal Anticipation Based on Memory. Journal of Cognitive Neuroscience, 2017, 29, 2081-2089.	1.1	34
99	The functional consequences of social distraction: Attention and memory for complex scenes. Cognition, 2017, 158, 215-223.	1.1	14
100	Altered cortical betaâ€band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Human Brain Mapping, 2017, 38, 237-254.	1.9	58
101	Increased rostral anterior cingulate activity following positive mental imagery training in healthy older adults. Social Cognitive and Affective Neuroscience, 2017, 12, 1950-1958.	1.5	15
102	[P4–033]: DEEP AND FREQUENT PHENOTYPING: A FEASIBILITY STUDY FOR EXPERIMENTAL MEDICINE IN DEMENTIA. Alzheimer's and Dementia, 2017, 13, P1268.	0.4	2
103	Task relevance modulates the behavioural and neural effects of sensory predictions. PLoS Biology, 2017, 15, e2003143.	2.6	50
104	Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations. Journal of Neuroscience, 2017, 37, 437-445.	1.7	9
105	Tracking the changing feature of a moving object. Journal of Vision, 2016, 16, 22.	0.1	7
106	Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance. PLoS ONE, 2016, 11, e0164174.	1.1	4
107	Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals. Cortex, 2016, 82, 206-216.	1.1	15
108	Early behavioural facilitation by temporal expectations in complex visual-motor sequences. Journal of Physiology (Paris), 2016, 110, 487-496.	2.1	5

#	Article	IF	CITATIONS
109	An investigation of mental imagery in bipolar disorder: Exploring "the mind's eye― Bipolar Disorders, 2016, 18, 669-683.	1.1	41
110	Innovative approaches to bipolar disorder and its treatment. Annals of the New York Academy of Sciences, 2016, 1366, 76-89.	1.8	81
111	Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions. Journal of Neuroscience, 2016, 36, 9001-9011.	1.7	36
112	Slow wave sleep and accelerated forgetting. Cortex, 2016, 84, 80-89.	1.1	20
113	Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing. Cortex, 2016, 74, 67-78.	1.1	16
114	Oxford Lithium Trial (OxLith) of the early affective, cognitive, neural and biochemical effects of lithium carbonate in bipolar disorder: study protocol for a randomised controlled trial. Trials, 2016, 17, 116.	0.7	23
115	Behavioral and Neural Markers of Flexible Attention over Working Memory in Aging. Cerebral Cortex, 2016, 26, 1831-1842.	1.6	61
116	Top–Down Activation of Spatiotopic Sensory Codes in Perceptual and Working Memory Search. Journal of Cognitive Neuroscience, 2016, 28, 996-1009.	1.1	15
117	Temporal orienting of attention can be preserved in normal aging Psychology and Aging, 2016, 31, 442-455.	1.4	30
118	Modulation of hippocampal theta and hippocampalâ€prefrontal cortex function by a schizophrenia risk gene. Human Brain Mapping, 2015, 36, 2387-2395.	1.9	44
119	Testing sensory evidence against mnemonic templates. ELife, 2015, 4, e09000.	2.8	112
120	ERP markers of target selection discriminate children with high vs. low working memory capacity. Frontiers in Systems Neuroscience, 2015, 9, 153.	1.2	19
121	Frontoparietal and Cingulo-opercular Networks Play Dissociable Roles in Control of Working Memory. Journal of Cognitive Neuroscience, 2015, 27, 2019-2034.	1.1	156
122	The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography. Cerebral Cortex, 2015, 25, 3868-3876.	1.6	27
123	Temporal Dynamics of Attention during Encoding versus Maintenance of Working Memory: Complementary Views from Event-related Potentials and Alpha-band Oscillations. Journal of Cognitive Neuroscience, 2015, 27, 492-508.	1.1	99
124	Imagining a brighter future: The effect of positive imagery training on mood, prospective mental imagery and emotional bias in older adults. Psychiatry Research, 2015, 230, 36-43.	1.7	48
125	Supraliminal but not subliminal distracters bias working memory recall Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 826-839.	0.7	19
126	Reward boosts working memory encoding over a brief temporal window. Visual Cognition, 2015, 23, 291-312.	0.9	22

#	Article	IF	CITATIONS
127	Time in Cortical Circuits. Journal of Neuroscience, 2015, 35, 13912-13916.	1.7	71
128	Preferential encoding of behaviorally relevant predictions revealed by EEG. Frontiers in Human Neuroscience, 2014, 8, 687.	1.0	5
129	Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9301-9306.	3.3	90
130	â€~Can you look me in the face?' Short-term SSRI Administration Reverts Avoidant Ocular Face Exploration in Subjects at Risk for Psychopathology. Neuropsychopharmacology, 2014, 39, 3059-3066.	2.8	19
131	Distinct neural mechanisms of individual and developmental differences in VSTM capacity. Developmental Psychobiology, 2014, 56, 601-610.	0.9	13
132	Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. NeuroImage, 2014, 101, 765-777.	2.1	54
133	Combining spatial and temporal expectations to improve visual perception. Journal of Vision, 2014, 14, 8-8.	0.1	106
134	Age Group and Individual Differences in Attentional Orienting Dissociate Neural Mechanisms of Encoding and Maintenance in Visual STM. Journal of Cognitive Neuroscience, 2014, 26, 864-877.	1.1	29
135	Failure to perceive clinical events: An under-recognised source of error. Resuscitation, 2014, 85, 952-956.	1.3	31
136	Orienting Attention Within Visual Shortâ€Term Memory: Development and Mechanisms. Child Development, 2014, 85, 578-592.	1.7	59
137	Sleep-dependent memory consolidation and accelerated forgetting. Cortex, 2014, 54, 92-105.	1.1	43
138	Attention Biases Visual Activity in Visual Short-term Memory. Journal of Cognitive Neuroscience, 2014, 26, 1377-1389.	1.1	34
139	Magnetoencephalography. Practical Neurology, 2014, 14, 336-343.	0.5	57
140	Perceiving the passage of time: neural possibilities. Annals of the New York Academy of Sciences, 2014, 1326, 60-71.	1.8	41
141	Power corrupts co-operation: cognitive and motivational effects in a double EEG paradigm. Social Cognitive and Affective Neuroscience, 2014, 9, 218-224.	1.5	6
142	Inter- and intra-individual variability in alpha peak frequency. NeuroImage, 2014, 92, 46-55.	2.1	460
143	Oscillatory Brain State Predicts Variability in Working Memory. Journal of Neuroscience, 2014, 34, 7735-7743.	1.7	92

144 Time for the Fourth Dimension in Attention. , 2014, , .

Anna Christina Nobre

#	Article	IF	CITATIONS
145	Temporal Expectation Enhances Contrast Sensitivity by Phase Entrainment of Low-Frequency Oscillations in Visual Cortex. Journal of Neuroscience, 2013, 33, 4002-4010.	1.7	263
146	Reward Associations Magnify Memory-based Biases on Perception. Journal of Cognitive Neuroscience, 2013, 25, 245-257.	1.1	22
147	Attention Restores Discrete Items to Visual Short-Term Memory. Psychological Science, 2013, 24, 550-556.	1.8	89
148	Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection. Journal of Neuroscience, 2013, 33, 16443-16458.	1.7	62
149	Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals?. PLoS ONE, 2013, 8, e65601.	1.1	9
150	Long-term Memories Bias Sensitivity and Target Selection in Complex Scenes. Journal of Cognitive Neuroscience, 2012, 24, 2281-2291.	1.1	43
151	Response inhibition results in the emotional devaluation of faces: neural correlates as revealed by fMRI. Social Cognitive and Affective Neuroscience, 2012, 7, 649-659.	1.5	36
152	Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3593-3598.	3.3	230
153	Long-term memory prepares neural activity for perception. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E360-7.	3.3	116
154	Effects of Decision Variables and Intraparietal Stimulation on Sensorimotor Oscillatory Activity in the Human Brain. Journal of Neuroscience, 2012, 32, 13805-13818.	1.7	73
155	Attentional control constrains visual short-term memory: Insights from developmental and individual differences. Quarterly Journal of Experimental Psychology, 2012, 65, 277-294.	0.6	46
156	Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 2012, 16, 129-135.	4.0	1,049
157	Temporal Expectation Improves the Quality of Sensory Information. Journal of Neuroscience, 2012, 32, 8424-8428.	1.7	227
158	Inferring task-related networks using independent component analysis in magnetoencephalography. NeuroImage, 2012, 62, 530-541.	2.1	115
159	Attention Modulates Maintenance of Representations in Visual Short-term Memory. Journal of Cognitive Neuroscience, 2012, 24, 51-60.	1.1	157
160	Orienting attention to locations in mental representations. Attention, Perception, and Psychophysics, 2012, 74, 146-162.	0.7	108
161	Top-down Biases in Visual Short-term Memory. , 2012, , 209-228.		6
162	Lacking Control over the Trade-Off between Quality and Quantity in Visual Short-Term Memory. PLoS ONE, 2012, 7, e41223.	1.1	19

#	Article	IF	CITATIONS
163	Endogenous modulation of low frequency oscillations by temporal expectations. Journal of Neurophysiology, 2011, 106, 2964-2972.	0.9	135
164	Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. Journal of Neurophysiology, 2011, 105, 1318-1326.	0.9	228
165	Alpha Oscillations Related to Anticipatory Attention Follow Temporal Expectations. Journal of Neuroscience, 2011, 31, 14076-14084.	1.7	315
166	Imagery for shapes activates position-invariant representations in human visual cortex. NeuroImage, 2011, 56, 1540-1545.	2.1	35
167	Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. NeuroImage, 2011, 54, 1221-1230.	2.1	49
168	Behavioural Dissociation between Exogenous and Endogenous Temporal Orienting of Attention. PLoS ONE, 2011, 6, e14620.	1.1	117
169	Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia, 2011, 49, 1458-1465.	0.7	66
170	Modulation of working-memory maintenance by directed attention. Neuropsychologia, 2011, 49, 1569-1577.	0.7	92
171	Attention and short-term memory: Crossroads. Neuropsychologia, 2011, 49, 1391-1392.	0.7	30
172	Modulation of neural activity by motivational and spatial biases. Neuropsychologia, 2011, 49, 2489-2497.	0.7	35
173	Age-Related Changes in Orienting Attention in Time. Journal of Neuroscience, 2011, 31, 12461-12470.	1.7	114
174	Biasing Perception by Spatial Long-Term Memory. Journal of Neuroscience, 2011, 31, 14952-14960.	1.7	45
175	Subliminally Presented and Stored Objects Capture Spatial Attention. Journal of Neuroscience, 2010, 30, 3567-3571.	1.7	22
176	Purely endogenous capture of attention by task-defining features proceeds independently from spatial attention. NeuroImage, 2010, 51, 859-866.	2.1	11
177	The Two Sides of Temporal Orienting. Experimental Psychology, 2010, 57, 142-148.	0.3	43
178	How can temporal expectations bias perception and action?. , 2010, , 371-390.		18
179	Applying an Attentional Set to Perceived and Remembered Features. PLoS ONE, 2009, 4, e7613.	1.1	11
180	Spatial selection of features within perceived and remembered objects. Frontiers in Human Neuroscience, 2009, 3, 6.	1.0	38

Anna Christina Nobre

#	Article	IF	CITATIONS
181	Searching for Targets within the Spatial Layout of Visual Short-Term Memory. Journal of Neuroscience, 2009, 29, 8032-8038.	1.7	139
182	The Timing of Neural Activity during Shifts of Spatial Attention. Journal of Cognitive Neuroscience, 2009, 21, 2369-2383.	1.1	16
183	Anticipating Conflict Facilitates Controlled Stimulus-response Selection. Journal of Cognitive Neuroscience, 2009, 21, 1461-1472.	1.1	49
184	Modelling distractor devaluation (DD) and its neurophysiological correlates. Neuropsychologia, 2009, 47, 2354-2366.	0.7	16
185	Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19569-19574.	3.3	166
186	Feature-based inhibition underlies the affective consequences of attention. Visual Cognition, 2009, 17, 500-530.	0.9	44
187	Spatial and temporal acuity of visual perception can be enhanced selectively by attentional set. Experimental Brain Research, 2008, 189, 339-344.	0.7	17
188	Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 2008, 18, 137-144.	2.0	449
189	Dissociable top-down anticipatory neural states for different linguistic dimensions. Neuropsychologia, 2008, 46, 1151-1160.	0.7	14
190	Differential Modulation of Word Recognition by Semantic and Spatial Orienting of Attention. Journal of Cognitive Neuroscience, 2008, 20, 787-801.	1.1	22
191	The Cerebellum Predicts the Timing of Perceptual Events. Journal of Neuroscience, 2008, 28, 2252-2260.	1.7	237
192	Attention Modulates Initial Stages of Visual Word Processing. Journal of Cognitive Neuroscience, 2008, 20, 1727-1736.	1.1	58
193	Social contact and other-race face processing in the human brain. Social Cognitive and Affective Neuroscience, 2008, 3, 16-25.	1.5	132
194	Neural Modulation by Regularity and Passage of Time. Journal of Neurophysiology, 2008, 100, 1649-1655.	0.9	134
195	Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 2008, 1, 4.	1.0	74
196	Response inhibition is linked to emotional devaluation: Behavioural and electrophysiological evidence. Frontiers in Human Neuroscience, 2008, 2, 13.	1.0	48
197	Acquisition of the Temporal and Ordinal Structure of Movement Sequences in Incidental Learning. Journal of Neurophysiology, 2008, 99, 2731-2735.	0.9	58
198	Choosing Where to Attend and the Medial Frontal Cortex: An fMRI Study. Journal of Neurophysiology, 2008, 100, 1397-1406.	0.9	32

#	Article	IF	CITATIONS
199	Efficient Attentional Selection Predicts Distractor Devaluation: Event-related Potential Evidence for a Direct Link between Attention and Emotion. Journal of Cognitive Neuroscience, 2007, 19, 1316-1322.	1.1	68
200	Subsecond Changes in Top–Down Control Exerted by Human Medial Frontal Cortex during Conflict and Action Selection: A Combined Transcranial Magnetic Stimulation–Electroencephalography Study. Journal of Neuroscience, 2007, 27, 11343-11353.	1.7	145
201	Attentional Modulation of Object Representations in Working Memory. Cerebral Cortex, 2007, 17, 2072-2083.	1.6	205
202	Influence of attentional demands on the processing of emotional facial expressions in the amygdala. NeuroImage, 2007, 38, 357-366.	2.1	95
203	The hazards of time. Current Opinion in Neurobiology, 2007, 17, 465-470.	2.0	479
204	Auditory evoked visual awareness following sudden ocular blindness: an EEG and TMS investigation. Experimental Brain Research, 2007, 176, 288-298.	0.7	27
205	Orienting attention to semantic categories. NeuroImage, 2006, 33, 1178-1187.	2.1	72
206	Orienting Attention Based on Long-Term Memory Experience. Neuron, 2006, 49, 905-916.	3.8	225
207	Combining Correlation and Interference Methods in the Human Brain. Focus on "Cortico-Cortical Interactions in Spatial Attention: A Combined ERP/TMS Studyâ€, Journal of Neurophysiology, 2006, 95, 2731-2732.	0.9	3
208	Other dimensions of attention. Neural Networks, 2006, 19, 1450-1452.	3.3	4
209	Selective Attention to Specific Features within Objects: Behavioral and Electrophysiological Evidence. Journal of Cognitive Neuroscience, 2006, 18, 539-561.	1.1	56
210	Cognitive control of attention in the human brain: Insights from orienting attention to mental representations. Brain Research, 2006, 1105, 20-31.	1.1	133
211	Selecting and ignoring the component features of a visual object: A negative priming paradigm. Visual Cognition, 2006, 14, 584-618.	0.9	22
212	FEF TMS Affects Visual Cortical Activity. Cerebral Cortex, 2006, 17, 391-399.	1.6	176
213	Modulation of brain activity by selective task sets observed using event-related potentials. Neuropsychologia, 2005, 43, 1514-1528.	0.7	60
214	The effects of combined caffeine and glucose drinks on attention in the human brain. Nutritional Neuroscience, 2005, 8, 141-153.	1.5	39
215	Synergistic Effect of Combined Temporal and Spatial Expectations on Visual Attention. Journal of Neuroscience, 2005, 25, 8259-8266.	1.7	300
216	Dissociating Linguistic Processes in the Left Inferior Frontal Cortex with Transcranial Magnetic Stimulation. Journal of Neuroscience, 2005, 25, 8010-8016.	1.7	288

#	Article	IF	CITATIONS
217	Directing spatial attention in mental representations: Interactions between attentional orienting and working-memory load. NeuroImage, 2005, 26, 733-743.	2.1	143
218	Language network specializations: An analysis with parallel task designs and functional magnetic resonance imaging. Neurolmage, 2005, 26, 975-985.	2.1	154
219	Time and the Brain: How Subjective Time Relates to Neural Time. Journal of Neuroscience, 2005, 25, 10369-10371.	1.7	148
220	A Heteromodal Large-Scale Network for Spatial Attention. , 2005, , 29-34.		7
221	Temporal Orienting of Attention. , 2005, , 257-263.		10
222	Sub-second "temporal attention―modulates alpha rhythms. A high-resolution EEG study. Cognitive Brain Research, 2004, 19, 259-268.	3.3	114
223	Time is of the essence. Trends in Cognitive Sciences, 2004, 8, 387-389.	4.0	67
224	Semantic Priming of Different Affective Categories Emotion, 2004, 4, 354-363.	1.5	57
225	Distinct neural substrates for visual search amongst spatial versus temporal distractors. Cognitive Brain Research, 2003, 17, 368-379.	3.3	69
226	The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neurolmage, 2003, 18, 633-641.	2.1	291
227	Brain Activations during Visual Search: Contributions of Search Efficiency versus Feature Binding. NeuroImage, 2003, 18, 91-103.	2.1	143
228	Orienting Attention to Locations in Internal Representations. Journal of Cognitive Neuroscience, 2003, 15, 1176-1194.	1.1	549
229	Watching where you look: modulation of visual processing of foveal stimuli by spatial attention. Neuropsychologia, 2002, 40, 2448-2460.	0.7	32
230	Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. Neuropsychologia, 2002, 40, 2325-2340.	0.7	161
231	Heterogeneity of Cingulate Contributions to Spatial Attention. NeuroImage, 2001, 13, 1065-1072.	2.1	155
232	Hunger selectively modulates corticolimbic activation to food stimuli in humans Behavioral Neuroscience, 2001, 115, 493-500.	0.6	385
233	The attentive homunculus: Now you see it, now you don't. Neuroscience and Biobehavioral Reviews, 2001, 25, 477-496.	2.9	135
234	Orienting attention to instants in time. Neuropsychologia, 2001, 39, 1317-1328.	0.7	290

#	Article	IF	CITATIONS
235	The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia, 2000, 38, 964-974.	0.7	226
236	Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 2000, 38, 808-819.	0.7	414
237	Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems. NeuroImage, 2000, 11, 210-216.	2.1	425
238	Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neuroscience, 1999, 2, 11-12.	7.1	245
239	A large-scale distributed network for covert spatial attention. Brain, 1999, 122, 1093-1106.	3.7	606
240	The Large-Scale Neural Network for Spatial Attention Displays Multifunctional Overlap But Differential Asymmetry. NeuroImage, 1999, 9, 269-277.	2.1	319
241	Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI. Journal of Neuroscience, 1998, 18, 7426-7435.	1.7	1,122
242	The neural system of language: structure and development. Current Opinion in Neurobiology, 1997, 7, 262-268.	2.0	26
243	Cortical Activation in the Human Brain during Lateral Saccades Using EPISTAR Functional Magnetic Resonance Imaging. NeuroImage, 1996, 3, 53-62.	2.1	91
244	Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. Journal of Neuroscience, 1995, 15, 1090-1098.	1.7	357
245	Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. Journal of Neuroscience, 1995, 15, 1080-1089.	1.7	342
246	Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. Journal of Neurosurgery, 1995, 83, 262-270.	0.9	292
247	Word recognition in the human inferior temporal lobe. Nature, 1994, 372, 260-263.	13.7	759
248	Language-Related ERPs: Scalp Distributions and Modulation by Word Type and Semantic Priming. Journal of Cognitive Neuroscience, 1994, 6, 233-255.	1.1	350
249	Modulation of semantic processing by spatial selective attention. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 88, 210-219.	2.0	179
250	Electrophysiological studies of color processing in human visual cortex. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 88, 343-355.	2.0	102
251	Decoding the Influence of Anticipatory States on Visual Perception in the Presence of Temporal Distractors. SSRN Electronic Journal, 0, , .	0.4	1
252	Output Planning at the Input Stage: Action Imprinting for Future Memory-Guided Behaviour. SSRN Electronic Journal, 0, , .	0.4	3