Verity J Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364726/publications.pdf

Version: 2024-02-01

71 papers 6,391 citations

71102 41 h-index 71 g-index

75 all docs

75 docs citations

75 times ranked 5957 citing authors

#	Article	IF	Citations
1	Escitalopram Restores Reversal Learning Impairments in Rats with Lesions of Orbital Frontal Cortex. Language, Cognition and Mind, 2021, , 389-409.	0.5	O
2	More rapid reversal learning following overtraining in the rat is evidence that behavioural and cognitive flexibility are dissociable. Behavioural Brain Research, 2019, 363, 45-52.	2.2	21
3	Exacerbation of the credit assignment problem in rats with lesions of the medial prefrontal cortex is revealed by Bayesian analysis of behavior in the pre-solution period of learning. Behavioural Brain Research, 2019, 372, 112037.	2.2	3
4	Food or friends? What motivates zebrafish (Danio rerio) performing a visual discrimination. Behavioural Brain Research, 2019, 359, 190-196.	2.2	14
5	Oral dosing of rodents using a palatable tablet. Psychopharmacology, 2018, 235, 1527-1532.	3.1	11
6	Assessment of intradimensional/extradimensional attentional set-shifting in rats. Neuroscience and Biobehavioral Reviews, 2018, 89, 72-84.	6.1	52
7	Understanding the relationship between suicidality, current depressed mood, personality, and cognitive factors. Psychology and Psychotherapy: Theory, Research and Practice, 2017, 90, 530-549.	2.5	15
8	Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat. Neuroscience, 2017, 345, 287-296.	2.3	23
9	Attentional Set-Shifting Across Species. Current Topics in Behavioral Neurosciences, 2015, 28, 363-395.	1.7	64
10	Attentional Set-Shifting in Rodents: A Review of Behavioural Methods and Pharmacological Results. Current Pharmaceutical Design, 2014, 20, 5046-5059.	1.9	60
11	Set shifting and reversal learning in borderline personality disorder. Personality and Mental Health, 2014, 8, 1-13.	1.2	7
12	Stratified medicine for mental disorders. European Neuropsychopharmacology, 2014, 24, 5-50.	0.7	152
13	Tacrine improves reversal learning in older rats. Neuropharmacology, 2013, 73, 284-289.	4.1	14
14	Innovative solutions to novel drug development in mental health. Neuroscience and Biobehavioral Reviews, 2013, 37, 2438-2444.	6.1	102
15	Measuring the construct of executive control in schizophrenia: Defining and validating translational animal paradigms for discovery research. Neuroscience and Biobehavioral Reviews, 2013, 37, 2125-2140.	6.1	68
16	Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology, 2013, 71, 148-153.	4.1	41
17	Discrimination reversal and attentional sets in zebrafish (Danio rerio). Behavioural Brain Research, 2012, 232, 264-268.	2.2	65
18	A plan for mental illness. Nature, 2012, 483, 269-269.	27.8	64

#	Article	IF	CITATIONS
19	Response to Westlund's commentary: â€ ⁻ Can conditioned reinforcers and variable-Ratio Schedules make food- and fluid control redundant?â€ ^{-™} . Journal of Neuroscience Methods, 2012, 204, 206-209.	2.5	2
20	Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. European Journal of Neuroscience, 2012, 36, 2368-2375.	2.6	70
21	The effects of DISC1 risk variants on brain activation in controls, patients with bipolar disorder and patients with schizophrenia. Psychiatry Research - Neuroimaging, 2011, 192, 20-28.	1.8	24
22	Refinement of the use of food and fluid control as motivational tools for macaques used in behavioural neuroscience research: Report of a Working Group of the NC3Rs. Journal of Neuroscience Methods, 2010, 193, 167-188.	2.5	60
23	Attention to visual, but not tactile, properties of a stimulus results in activation of FOS protein in the visual thalamic reticular nucleus of rats. Behavioural Brain Research, 2010, 211, 248-252.	2.2	10
24	Orbitofrontal morphology in people at high risk of developing schizophrenia. European Psychiatry, 2010, 25, 366-372.	0.2	41
25	Asenapine restores cognitive flexibility in rats with medial prefrontal cortex lesions. Psychopharmacology, 2009, 202, 295-306.	3.1	49
26	Inhibition of thalamic excitability by 4,5,6,7â€tetrahydroisoxazolo[4,5]pyridineâ€3â€ol: a selective role for Î'â€GABA _A receptors. European Journal of Neuroscience, 2009, 29, 1177-1187.	2.6	58
27	Lesions of the basal forebrain impair reversal learning but not shifting of attentional set in rats. Behavioural Brain Research, 2008, 187, 100-108.	2.2	67
28	Amphetamine and the adenosine A2A antagonist KW-6002 enhance the effects of conditional temporal probability of a stimulus in rats Behavioral Neuroscience, 2007, 121, 535-542.	1.2	4
29	The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats. Neurobiology of Learning and Memory, 2007, 88, 75-81.	1.9	90
30	Lesions of the dorsal noradrenergic bundle impair attentional setâ€shifting in the rat. European Journal of Neuroscience, 2007, 25, 3719-3724.	2.6	152
31	Difficulty Overcoming Learned Non-reward during Reversal Learning in Rats with Ibotenic Acid Lesions of Orbital Prefrontal Cortex. Annals of the New York Academy of Sciences, 2007, 1121, 407-420.	3.8	68
32	The effect of the adenosine A2A antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology, 2006, 184, 46-55.	3.1	29
33	Quality of Life in Parkinson's Disease: Movement Disorders Clinic vs General Medical Clinic - A Comparative Study. Scottish Medical Journal, 2005, 50, 18-20.	1.3	5
34	Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neuroscience and Biobehavioral Reviews, 2005, 29, 493-500.	6.1	520
35	5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats. Psychopharmacology, 2005, 181, 253-259.	3.1	111
36	Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neuroscience Letters, 2005, 379, 174-179.	2.1	155

#	Article	IF	CITATIONS
37	Valproate prevents the induction, but not the expression of morphine sensitization in mice. Behavioural Brain Research, 2004, 152, 251-257.	2.2	30
38	Double dissociation of social and environmental stimulation on spatial learning and reversal learning in rats. Behavioural Brain Research, 2004, 152, 307-314.	2.2	117
39	Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behavioural Brain Research, 2003, 146, 97-103.	2.2	551
40	Voluntary saccadic eye movements in humans studied with a double-cue paradigm. Vision Research, 2002, 42, 1897-1915.	1.4	9
41	The effect of excitotoxic lesions of the pedunculopontine tegmental nucleus on performance of a progressive ratio schedule of reinforcement. Neuroscience, 2002, 112, 417-425.	2.3	22
42	Rodent models of prefrontal cortical function. Trends in Neurosciences, 2002, 25, 340-343.	8.6	283
43	The Thalamic Reticular Nucleus: More Than a Sensory Nucleus?. Neuroscientist, 2002, 8, 302-305.	3.5	60
44	The Efficacy of Policy Statements on Plagiarism: Do They Change Students' Views?. Research in Higher Education, 2001, 42, 103-118.	1.7	69
45	Anticipatory errors after unilateral lesions of the subthalamic nucleus in the rat: Evidence for a failure of response inhibition Behavioral Neuroscience, 2000, 114, 150-157.	1.2	33
46	Cholinergic neurotransmission influences covert orientation of visuospatial attention in the rat. Psychopharmacology, 2000, 150, 112-116.	3.1	97
47	Medial Frontal Cortex Mediates Perceptual Attentional Set Shifting in the Rat. Journal of Neuroscience, 2000, 20, 4320-4324.	3.6	1,258
48	Thalamic Reticular Nucleus Activation Reflects Attentional Gating during Classical Conditioning. Journal of Neuroscience, 2000, 20, 8897-8901.	3.6	112
49	Attentional Orienting Is Impaired by Unilateral Lesions of the Thalamic Reticular Nucleus in the Rat. Journal of Neuroscience, 1999, 19, 10135-10139.	3.6	114
50	Reaction time performance following unilateral striatal dopamine depletion and lesions of the subthalamic nucleus in the rat. European Journal of Neuroscience, 1999, 11, 1003-1010.	2.6	60
51	Mechanisms underlying attentional set-shifting inParkinsons disease. Neuropsychologia, 1999, 37, 605-616.	1.6	91
52	Reaction Time Deficits and Parkinson's Disease. Neuroscience and Biobehavioral Reviews, 1998, 22, 865-881.	6.1	119
53	Simple and choice reaction-time performance following occlusion of the anterior cerebral arteries in the rat. Experimental Brain Research, 1998, 123, 269-281.	1.5	20
54	Effects of excitotoxic lesions of the rat ventral striatum on the perception of reward cost. Experimental Brain Research, 1998, 123, 439-448.	1.5	56

#	Article	IF	Citations
55	Excitotoxic lesions of the subthalamic nucleus ameliorate asymmetry induced by striatal dopamine depletion in the rat. Behavioural Brain Research, 1998, 90, 73-77.	2.2	16
56	Assessment of sensorimotor neglect after occlusion of the middle cerebral artery in the rat Behavioral Neuroscience, 1997, 111, 1133-1145.	1.2	16
57	Deficits in response initiation, but not attention, following excitotoxic lesions of posterior parietal cortex in the rat. Brain Research, 1997, 775, 81-90.	2.2	22
58	On the Relationships Between the Striatum and the Pedunculopontine Tegmental Nucleus. Critical Reviews in Neurobiology, 1997, 11, 241-261.	3.1	121
59	Memory for the changing cost of a reward is mediated by the sublenticular extended amygdala. Brain Research Bulletin, 1996, 39, 163-170.	3.0	13
60	Covert Orienting of Attention in the Rat and the Role of Striatal Dopamine. Journal of Neuroscience, 1996, 16, 3082-3088.	3.6	75
61	The effect of systemic d -amphetamine on motor versus motivational processes in the rat. Psychopharmacology, 1996, 128, 171-180.	3.1	19
62	The rat nervous system. Neuropsychologia, 1996, 34, 160.	1.6	2
63	Discriminative Cues Indicating Reward Magnitude Continue to Determine Reaction Time of Rats Following Lesions of the Nucleus Accumbens. European Journal of Neuroscience, 1995, 7, 2479-2485.	2.6	58
64	Behavioural neuroscience: Volume II. A practical approach. Neuropsychologia, 1994, 32, 1306-1307.	1.6	1
65	Dopamine dependent reaction time deficits in patients with parkinson's disease are task specific. Neuropsychologia, 1993, 31, 459-469.	1.6	42
66	Striatal Graft-Associated Recovery of a Lesion-Induced Performance Deficit in the Rat Requires Learning to Use The Transplant. European Journal of Neuroscience, 1992, 4, 119-126.	2.6	140
67	SIMPLE AND CHOICE REACTION TIME PERFORMANCE FOLLOWING UNILATERAL STRIATAL DOPAMINE DEPLETION IN THE RAT. Brain, 1991, 114, 513-525.	7.6	156
68	Response-related deficits following unilateral lesions of the medial agranular cortex of the rat Behavioral Neuroscience, 1991, 105, 567-578.	1.2	41
69	The Role of the Striatum in the Mental Chronometry of Action: A Theoretical Review. Reviews in the Neurosciences, 1990, 2, 181-214.	2.9	95
70	Elementary processes of response selection mediated by distinct regions of the striatum. Journal of Neuroscience, 1989, 9, 3760-3765.	3.6	112
71	Deficits in response space following unilateral striatal dopamine depletion in the rat. Journal of Neuroscience, 1989, 9, 983-989.	3.6	69