Sri Ramachandra Murthy Madiraju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3647006/publications.pdf

Version: 2024-02-01

Sri Ramachandra Murthy

#	Article	IF	CITATIONS
1	Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans. Nature Communications, 2022, 13, 177.	12.8	16
2	Glycerol-3-phosphate phosphatase operates a glycerol shunt in pancreatic β-cells that controls insulin secretion and metabolic stress. Molecular Metabolism, 2022, 60, 101471.	6.5	5
3	Neutral sphingomyelinaseâ \in and cardiometabolic diseases. Obesity Reviews, 2021, 22, e13248.	6.5	21
4	Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer. Cancers, 2021, 13, 1273.	3.7	4
5	New Mammalian Glycerol-3-Phosphate Phosphatase: Role in β-Cell, Liver and Adipocyte Metabolism. Frontiers in Endocrinology, 2021, 12, 706607.	3.5	17
6	Lipid-associated metabolic signalling networks in pancreatic beta cell function. Diabetologia, 2020, 63, 10-20.	6.3	58
7	The multi-faces of Angptl8 in health and disease: Novel functions beyond lipoprotein lipase modulation. Progress in Lipid Research, 2020, 80, 101067.	11.6	48
8	Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic β-Cell. Diabetes, 2020, 69, 279-290.	0.6	92
9	Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight, 2020, 5, .	5.0	20
10	Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic Î ² -cells. Journal of Biological Chemistry, 2017, 292, 7407-7422.	3.4	47
11	Identification of the signals for glucose-induced insulin secretion in INS1 (832/13) β-cells using metformin-induced metabolic deceleration as a model. Journal of Biological Chemistry, 2017, 292, 19458-19468.	3.4	19
12	Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes, Obesity and Metabolism, 2017, 19, 76-89.	4.4	62
13	Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochimie, 2017, 143, 18-28.	2.6	43
14	A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice. Diabetologia, 2016, 59, 2654-2663.	6.3	39
15	α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility. Cell Reports, 2016, 17, 1217-1226.	6.4	29
16	α/β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes. Cell Reports, 2016, 14, 2872-2888.	6.4	61
17	Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors. Journal of Lipid Research, 2016, 57, 131-141.	4.2	42
18	Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E430-9.	7.1	88

Sri Ramachandra Murthy

#	Article	IF	CITATIONS
19	Differential Insulin Secretion of High-Fat Diet-Fed C57BL/6NN and C57BL/6NJ Mice: Implications of Mixed Genetic Background in Metabolic Studies. PLoS ONE, 2016, 11, e0159165.	2.5	24
20	αĴî²-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli. Molecular Metabolism, 2015, 4, 940-950.	6.5	32
21	αĴ²-Hydrolase Domain-6-Accessible Monoacylglycerol Controls Glucose-Stimulated Insulin Secretion. Cell Metabolism, 2014, 19, 993-1007.	16.2	125
22	Metabolic Inflexibility Impairs Insulin Secretion and Results In MODY-like Diabetes in Triple FoxO-Deficient Mice. Cell Metabolism, 2014, 20, 593-602.	16.2	86
23	Metabolic Signaling in Fuel-Induced Insulin Secretion. Cell Metabolism, 2013, 18, 162-185.	16.2	453
24	A Role for Cytosolic Isocitrate Dehydrogenase as a Negative Regulator of Glucose Signaling for Insulin Secretion in Pancreatic ß-Cells. PLoS ONE, 2013, 8, e77097.	2.5	41
25	Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes. Molecular and Cellular Endocrinology, 2012, 353, 88-100.	3.2	124
26	β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass. Diabetes, 2010, 59, 2178-2187.	0.6	144
27	Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics, 2009, 4, 399-403.	2.7	112
28	Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion. Journal of Biological Chemistry, 2009, 284, 16848-16859.	3.4	73
29	Islet beta cell failure in the 60% pancreatectomised obese hyperlipidaemic Zucker fatty rat: severe dysfunction with altered glycerolipid metabolism without steatosis or a falling beta cell mass. Diabetologia, 2009, 52, 1122-1132.	6.3	50
30	Glucagon-Like Peptide-1 Induced Signaling and Insulin Secretion Do Not Drive Fuel and Energy Metabolism in Primary Rodent Pancreatic I ² -Cells. PLoS ONE, 2009, 4, e6221.	2.5	54
31	Glycerolipid Metabolism and Signaling in Health and Disease. Endocrine Reviews, 2008, 29, 647-676.	20.1	242
32	G Protein-Coupled Receptors and Insulin Secretion: 119 and Counting. Endocrinology, 2007, 148, 2598-2600.	2.8	32