
David B Conley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3646260/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokines in Chronic Rhinosinusitis. Role in Eosinophilia and Aspirin-exacerbated Respiratory Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 682-694.	5.6	224
2	Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2812-2820.e3.	3.8	221
3	Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2013, 132, 593-600.e12.	2.9	210
4	Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. Journal of Allergy and Clinical Immunology, 2017, 139, 699-703.e7.	2.9	140
5	Medical therapy vs surgery for chronic rhinosinusitis: a prospective, multiâ€institutional study with 1â€year followâ€up. International Forum of Allergy and Rhinology, 2013, 3, 4-9.	2.8	121
6	Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. Journal of Allergy and Clinical Immunology, 2015, 136, 737-746.e4.	2.9	114
7	Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps. Immunity, Inflammation and Disease, 2017, 5, 233-243.	2.7	105
8	Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2013, 132, 584-592.e4.	2.9	104
9	Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. Journal of Allergy and Clinical Immunology, 2017, 139, 1966-1978.e9.	2.9	103
10	Increased noneosinophilic nasal polyps in chronic rhinosinusitis in US second-generation Asians suggest genetic regulation of eosinophilia. Journal of Allergy and Clinical Immunology, 2015, 135, 576-579.	2.9	94
11	Basophils are elevated in nasal polyps of patients with chronic rhinosinusitis without aspirin sensitivity. Journal of Allergy and Clinical Immunology, 2014, 133, 1759-1763.	2.9	80
12	Clinical Characteristics of Patients with Chronic Rhinosinusitis without Nasal Polyps in an AcademicÂSetting. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1010-1016.	3.8	73
13	Phonation threshold pressure measurements during phonation by airflow interruption. Laryngoscope, 1999, 109, 425-432.	2.0	68
14	Proton pump inhibitors decrease eotaxin-3/CCL26 expression in patients with chronic rhinosinusitis with nasal polyps: Possible role of the nongastric H,K-ATPase. Journal of Allergy and Clinical Immunology, 2017, 139, 130-141.e11.	2.9	63
15	Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. Journal of Allergy and Clinical Immunology, 2021, 147, 1306-1317.	2.9	63
16	Staphylococcal Exotoxins and Nasal Polyposis: Analysis of Systemic and Local Responses. American Journal of Rhinology & Allergy, 2005, 19, 327-333.	2.2	60
17	Superantigens and Chronic Rhinosinusitis: Skewing of T-Cell Receptor Vβ-Distributions in Polyp-Derived CD4+ and CD8+ T Cells. American Journal of Rhinology & Allergy, 2006, 20, 534-539.	2.2	60
18	Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2015, 136, 1548-1558.e7.	2.9	51

DAVID B CONLEY

#	Article	IF	CITATIONS
19	Superior turbinate eosinophilia correlates with olfactory deficit in chronic rhinosinusitis patients. Laryngoscope, 2017, 127, 2210-2218.	2.0	48
20	A pilot study of symptom profiles from a polyp vs an eosinophilicâ€based classification of chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2016, 6, 500-507.	2.8	47
21	Efficacy of Endoscopic Sinus Surgery in the Management of Patients with Asthma and Chronic Sinusitis. American Journal of Rhinology & Allergy, 2001, 15, 49-54.	2.2	46
22	Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2021, 147, 600-612.	2.9	43
23	IL-10, TGF-β, and glucocorticoid prevent the production of type 2 cytokines in human group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2018, 141, 1147-1151.e8.	2.9	40
24	The Clinical Significance of Specific Antibody Deficiency (SAD) Severity in Chronic Rhinosinusitis (CRS). Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1105-1111.	3.8	39
25	Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2022, 150, 352-361.e7.	2.9	39
26	Superantigens and Chronic Rhinosinusitis II: Analysis of T-Cell Receptor Vβ Domains in Nasal Polyps. American Journal of Rhinology & Allergy, 2006, 20, 451-455.	2.2	38
27	Epithelial activators of type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not <scp>IL</scp> â€25 or <scp>IL</scp> â€33, in chronic rhinosinusitis with nasal polyps in Chicago, Illinois. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2251-2254.	5.7	37
28	Classical complement pathway activation in the nasal tissue of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 89-100.e2.	2.9	36
29	Asthma onset pattern and patient outcomes in a chronic rhinosinusitis population. International Forum of Allergy and Rhinology, 2018, 8, 495-503.	2.8	36
30	Clinical Characteristics of Adults With Chronic Rhinosinusitis and Specific Antibody Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 236-242.	3.8	35
31	Surgical anatomy and variations of the infraorbital nerve. Laryngoscope, 2015, 125, 1296-1300.	2.0	35
32	Microparticles in nasal lavage fluids in chronic rhinosinusitis: Potential biomarkers for diagnosis of aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2017, 140, 720-729.	2.9	31
33	Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2022, 149, 1666-1674.	2.9	28
34	Proprotein convertases generate a highly functional heterodimeric form of thymic stromal lymphopoietin in humans. Journal of Allergy and Clinical Immunology, 2017, 139, 1559-1567.e8.	2.9	27
35	Measurement and comparison of health utility assessments in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2015, 5, 929-936.	2.8	26
36	Olfaction in Endoscopic Sinus and Skull Base Surgery. Otolaryngologic Clinics of North America, 2015, 48, 795-804.	1.1	26

DAVID B CONLEY

#	Article	IF	CITATIONS
37	Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps. Mucosal Immunology, 2020, 13, 86-95.	6.0	25
38	Evidence for altered levels of IgD in the nasal airway mucosa of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1562-1571.e5.	2.9	24
39	Current Utilization of Balloon Dilation versus Endoscopic Techniques in Pediatric Sinus Surgery. Otolaryngology - Head and Neck Surgery, 2014, 151, 852-860.	1.9	22
40	Increased thrombin-activatable fibrinolysis inhibitor levels in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2019, 144, 1566-1574.e6.	2.9	20
41	Studies of the role of basophils in aspirin-exacerbated respiratory disease pathogenesis. Journal of Allergy and Clinical Immunology, 2021, 148, 439-449.e5.	2.9	20
42	Prevalence and characterization of chronic rhinosinusitis in patients with non‒cystic fibrosis bronchiectasis at a tertiary care center in the United States. International Forum of Allergy and Rhinology, 2019, 9, 1424-1429.	2.8	19
43	A prospective analysis evaluating tissue biopsy location and its clinical relevance in chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2017, 7, 1058-1064.	2.8	18
44	Utilization of a novel interactive mobile health platform to evaluate functional outcomes and pain following septoplasty and functional endoscopic sinus surgery. International Forum of Allergy and Rhinology, 2019, 9, 345-351.	2.8	17
45	Potential Involvement of the Epidermal Growth Factor Receptor Ligand Epiregulin and Matrix Metalloproteinase-1 in Pathogenesis of Chronic Rhinosinusitis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 334-345.	2.9	16
46	Evaluating metrics of responsiveness using patientâ€reported outcome measures in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2017, 7, 128-134.	2.8	16
47	Multiple Site Cryoablation Treatment of the Posterior Nasal Nerve for Treatment of Chronic Rhinitis: An Observational Feasibility Study. Allergy and Rhinology, 2020, 11, 215265672094699.	1.6	16
48	Clinical factors associated with acute exacerbations of chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1598-1605.	2.9	16
49	Age-related olfactory dysfunction: cellular and molecular characterization in the rat. American Journal of Rhinology & Allergy, 2003, 17, 169-75.	2.2	16
50	ACR Appropriateness Criteria® Neck Mass-Adenopathy. Journal of the American College of Radiology, 2019, 16, S150-S160.	1.8	15
51	Development and Preliminary Validation of a New Patient-Reported Outcome Measure for Chronic Rhinosinusitis (CRS-PRO). Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2341-2350.e1.	3.8	15
52	Chronic sinusitis with nasal polyps: staphylococcal exotoxin immunoglobulin E and cellular inflammation. American Journal of Rhinology & Allergy, 2004, 18, 273-8.	2.2	13
53	Prevalence of Bronchiectasis in Patients with Chronic Rhinosinusitis in a Tertiary Care Center. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3188-3195.e2.	3.8	12
54	Suppressor of cytokine signaling 3 expression is diminished in sinonasal tissues from patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2014, 133, 275-277.e1.	2.9	11

DAVID B CONLEY

#	Article	IF	CITATIONS
55	ACR Appropriateness Criteria \hat{A}^{\circledast} Cranial Neuropathy. Journal of the American College of Radiology, 2017, 14, S406-S420.	1.8	10
56	Responsiveness and Convergent Validity of a New Patient-Reported Outcome Measure for Chronic Rhinosinusitis (CRS-PRO). Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2351-2359.e2.	3.8	10
57	Responsiveness and convergent validity of the chronic rhinosinusitis patientâ€reported outcome (CRSâ€PRO) measure in CRS patients undergoing endoscopic sinus surgery. International Forum of Allergy and Rhinology, 2021, 11, 1308-1320.	2.8	10
58	CRSâ€₽RO and SNOTâ€22 correlations with type 2 inflammatory mediators in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2022, 12, 1377-1386.	2.8	10
59	Tissue proteases convert CCL23 into potent monocyte chemoattractants in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2016, 137, 1274-1277.e9.	2.9	9
60	Impact of type 2 targeting biologics on acute exacerbations of chronic rhinosinusitis. Allergy and Asthma Proceedings, 2021, 42, 417-424.	2.2	9
61	Efficacy of an oral CRTH2 antagonist (AZD1981) in the treatment of chronic rhinosinusitis with nasal polyps in adults: A randomized controlled clinical trial. Clinical and Experimental Allergy, 2022, 52, 859-867.	2.9	9
62	Procalcitonin as a Biomarker in Rhinosinusitis: A Systematic Review. American Journal of Rhinology and Allergy, 2019, 33, 103-112.	2.0	8
63	TNF induces production of type 2 cytokines in human group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2020, 145, 437-440.e8.	2.9	6
64	Integrin β6 microparticles in nasal lavage fluids; potential new biomarkers for basal cell activation in chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3261-3264.	5.7	6
65	The Role of Point-Of-Care CT in the Management of Chronic Rhinosinusitis: A Case-Control Study. Ear, Nose and Throat Journal, 2011, 90, 376-381.	0.8	5
66	Emergency cricothyrotomy during the COVID-19 pandemic: how to suppress aerosolization. Trauma Surgery and Acute Care Open, 2020, 5, e000542.	1.6	4
67	Antiâ€phospholipid antibodies are elevated and functionally active in chronic rhinosinusitis with nasal polyps. Clinical and Experimental Allergy, 2022, 52, 954-964.	2.9	4
68	Use of intraoperative frontal sinus mometasoneâ€eluting stents decreased interleukin 5 and interleukin 13 in patients with chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2022, 12, 1330-1339.	2.8	4
69	Should Oral Corticosteroids be Used in Medical Therapy for Chronic Rhinosinusitis? A Risk Analysis. Laryngoscope, 2021, 131, 473-481.	2.0	3
70	Effectiveness of a simulation-based mastery learning to train clinicians on a novel cricothyrotomy procedure at an academic medical centre during a pandemic: a quasi-experimental cohort study. BMJ Open, 2021, 11, e054746.	1.9	3
71	Persistent discharge or edema after endoscopic sinus surgery in patients with chronic rhinosinusitis is associated with a type 1 or 3 endotype. International Forum of Allergy and Rhinology, 2023, 13, 15-24.	2.8	3
72	Studies on activation and regulation of the coagulation cascade in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2022, , .	2.9	2

#	Article	IF	CITATIONS
73	Association of common filaggrin null mutations with atopy but not chronic rhinosinusitis. Annals of Allergy, Asthma and Immunology, 2015, 114, 420-421.	1.0	1
74	Intracerebral abscesses from otologic and rhinologic sources: Is there a difference?. Laryngoscope, 2009, 119, S220.	2.0	0
75	Utility of Point-of-Care COVID-19 Testing in an Outpatient Otolaryngology clinic. OTO Open, 2021, 5, 2473974X2110493.	1.4	Ο