Nobuhiro Tsutsumi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3645775/publications.pdf

Version: 2024-02-01

162 papers

7,688 citations

51 h-index 81 g-index

163 all docs 163
docs citations

163 times ranked 7869 citing authors

#	Article	IF	CITATIONS
1	Sorghum Ionomics Reveals the Functional <i>SbHMA3a</i> Allele that Limits Excess Cadmium Accumulation in Grains. Plant and Cell Physiology, 2022, 63, 713-728.	3.1	6
2	<i>DOMINANT AWN INHIBITOR i> Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. Plant and Cell Physiology, 2022, 63, 901-918.</i>	3.1	6
3	Targeted base editing in the mitochondrial genome of <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121177119.	7.1	31
4	Key root traits of Poaceae for adaptation to soil water gradients. New Phytologist, 2021, 229, 3133-3140.	7.3	49
5	FMT, a protein that affects mitochondrial distribution, interacts with translation-related proteins in Arabidopsis thaliana. Plant Cell Reports, 2021, 40, 327-337.	5.6	5
6	Climate-smart crops: key root anatomical traits that confer flooding tolerance. Breeding Science, 2021, 71, 51-61.	1.9	24
7	Spatial kernel models capturing field heterogeneity for accurate estimation of genetic potential. Breeding Science, 2021, 71, 444-455.	1.9	О
8	Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Scientific Reports, 2021, 11, 9398.	3.3	8
9	Targeted base editing in the plastid genome of Arabidopsis thaliana. Nature Plants, 2021, 7, 906-913.	9.3	62
10	NB-LRR-encoding genes conferring susceptibility to organophosphate pesticides in sorghum. Scientific Reports, 2021, 11, 19828.	3.3	5
11	Longin R-SNARE is retrieved from the plasma membrane by ANTH domain-containing proteins in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25150-25158.	7.1	18
12	Targeted gene disruption of <i>ATP synthases 6â€1</i> and <i>6â€2</i> in the mitochondrial genome of <i>Arabidopsis thaliana</i> by mitoTALENs. Plant Journal, 2020, 104, 1459-1471.	5.7	57
13	Dissecting the Genetic Architecture of Biofuel-Related Traits in a Sorghum Breeding Population. G3: Genes, Genomes, Genetics, 2020, 10, 4565-4577.	1.8	2
14	RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Plant and Cell Physiology, 2020, 61, 1262-1272.	3.1	25
15	A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots. Plants, 2020, 9, 610.	3.5	41
16	Distance-to-Time Conversion Using Gompertz Model Reveals Age-Dependent Aerenchyma Formation in Rice Roots. Plant Physiology, 2020, 183, 1424-1427.	4.8	12
17	Effect of salt tolerance on biomass production in a large population of sorghum accessions. Breeding Science, 2020, 70, 167-175.	1.9	13
18	Impacts of dominance effects on genomic prediction of sorghum hybrid performance. Breeding Science, 2020, 70, 605-616.	1.9	5

#	Article	IF	CITATIONS
19	Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nature Plants, 2019, 5, 722-730.	9.3	126
20	Comparison and Characterization of Mutations Induced by Gamma-Ray and Carbon-lon Irradiation in Rice (<i>Oryza sativa</i> L.) Using Whole-Genome Resequencing. G3: Genes, Genomes, Genetics, 2019, 9, 3743-3751.	1.8	63
21	Accumulation of radioactive cesium in sorghum (Sorghum bicolor (L.) Moench) accessions cultivated in Fukushima in 2011 and 2012. Soil Science and Plant Nutrition, 2019, 65, 298-304.	1.9	1
22	Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20770-20775.	7.1	107
23	Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging. Frontiers in Plant Science, 2019, 10, 259.	3.6	56
24	Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology. PLoS ONE, 2019, 14, e0224695.	2.5	13
25	How will plant science contribute to improve productivity in agriculture?—Future prospects of plant science—. Ikushugaku Kenkyu, 2019, 21, 49-54.	0.3	0
26	Title is missing!. , 2019, 14, e0224695.		0
27	Title is missing!. , 2019, 14, e0224695.		0
28	Title is missing!. , 2019, 14, e0224695.		0
29	Title is missing!. , 2019, 14, e0224695.		0
30	miRNAs control HAM1 functions at the single-cell-layer level and are essential for normal embryogenesis in Arabidopsis. Plant Molecular Biology, 2018, 96, 627-640.	3.9	22
31	The mitochondrial genome of an asymmetrically cell-fused rapeseed, <i>Brassica napus</i> , containing a radish-derived cytoplasmic male sterility-associated gene. Genes and Genetic Systems, 2018, 93, 143-148.	0.7	11
32	Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8783-E8792.	7.1	30
33	Genetic Analysis of Cadmium Accumulation in Shoots of Sorghum Landraces. Crop Science, 2017, 57, 22-31.	1.8	8
34	Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data. DNA Research, 2017, 24, 397-405.	3.4	19
35	An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. Plant Cell, 2017, 29, 775-790.	6.6	195
36	High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling. Frontiers in Plant Science, 2017, 8, 421.	3.6	198

3

#	Article	IF	CITATIONS
37	Cold Treatment Induces Transient Mitochondrial Fragmentation in Arabidopsis thaliana in a Way that Requires DRP3A but not ELM1 or an ELM1-Like Homologue, ELM2. International Journal of Molecular Sciences, 2017, 18, 2161.	4.1	15
38	Identification of a bipartite nuclear localization signal in the silkworm Masc protein. FEBS Letters, 2016, 590, 2256-2261.	2.8	11
39	Mitochondrial outer membrane forms bridge between two mitochondria in Arabidopsis thaliana. Plant Signaling and Behavior, 2016, 11, e1167301.	2.4	3
40	Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2016, 474, 742-746.	2.1	71
41	Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0146717.	2.5	29
42	Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots. Plant Physiology, 2015, 169, 180-193.	4.8	46
43	Arabidopsis dynamin-related proteins, DRP2A and DRP2B, function coordinately in post-Golgi trafficking. Biochemical and Biophysical Research Communications, 2015, 456, 238-244.	2.1	36
44	Dynamin-related proteins in plant post-Golgi traffic. Frontiers in Plant Science, 2014, 5, 408.	3.6	40
45	Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water. Annals of Botany, 2014, 113, 851-859.	2.9	45
46	Strigolactone and Cytokinin Act Antagonistically in Regulating Rice Mesocotyl Elongation in Darkness. Plant and Cell Physiology, 2014, 55, 30-41.	3.1	100
47	RCN1/OsABCG5, an ATPâ€binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (<i>Oryza sativa</i>). Plant Journal, 2014, 80, 40-51.	5.7	94
48	Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany, 2014, 65, 4795-4806.	4.8	83
49	Flower Bud Formation of Sacred Lotus (Nelumbo nucifera Gaertn.): A Case Study of  Gyozankouren' Grown in a Container. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 516-518.	1.0	5
50	Distribution of cellulosic wall in the anthers of Arabidopsis during microsporogenesis. Plant Cell Reports, 2013, 32, 1743-1750.	5.6	14
51	Characterization of a novel chromodomain-containing gene from the silkworm, Bombyx mori. Gene, 2013, 527, 649-654.	2.2	8
52	Transcriptome Analysis of Developing Ovules in Rice Isolated by Laser Microdissection. Plant and Cell Physiology, 2013, 54, 750-765.	3.1	60
53	Epimutagenesis and its application for next generation breeding. Ikushugaku Kenkyu, 2013, 15, 42-50.	0.3	0
54	Arabidopsis Sphingolipid Fatty Acid 2-Hydroxylases (AtFAH1 and AtFAH2) Are Functionally Differentiated in Fatty Acid 2-Hydroxylation and Stress Responses. Plant Physiology, 2012, 159, 1138-1148.	4.8	74

#	Article	lF	Citations
55	A newly discovered function of peroxisomes. Plant Signaling and Behavior, 2012, 7, 1589-1593.	2.4	11
56	Phosphorylation and ubiquitination of dynaminâ€related proteins (AtDRP3A/3B) synergically regulate mitochondrial proliferation during mitosis. Plant Journal, 2012, 72, 43-56.	5.7	32
57	A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nature Cell Biology, 2011, 13, 853-859.	10.3	258
58	Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytologist, 2011, 190, 351-368.	7.3	185
59	MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis. Plant Cell Reports, 2011, 30, 239-244.	5.6	38
60	DCL2is highly expressed in the egg cell in both rice and Arabidopsis. Plant Signaling and Behavior, 2011, 6, 604-606.	2.4	8
61	Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Annals of Botany, 2011, 108, 253-261.	2.9	40
62	Distinct Gene Expression Profiles in Egg and Synergid Cells of Rice as Revealed by Cell Type-Specific Microarrays \hat{A} \hat{A} . Plant Physiology, 2011, 155, 881-891.	4.8	58
63	Peroxisomes Are Involved in Biotin Biosynthesis in Aspergillus and Arabidopsis. Journal of Biological Chemistry, 2011, 286, 30455-30461.	3.4	60
64	The rice mitochondrial iron transporter is essential for plant growth. Nature Communications, 2011, 2, 322.	12.8	145
65	Comprehensive Network Analysis of Anther-Expressed Genes in Rice by the Combination of 33 Laser Microdissection and 143 Spatiotemporal Microarrays. PLoS ONE, 2011, 6, e26162.	2.5	72
66	Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species. Genes and Genetic Systems, 2010, 85, 319-326.	0.7	29
67	Studies of mitochondrial morphology and DNA amount in the rice egg cell. Current Genetics, 2010, 56, 33-41.	1.7	23
68	Fusion of mitochondria in tobacco suspension cultured cells is dependent on the cellular ATP level but not on actin polymerization. Plant Cell Reports, 2010, 29, 1139-1145.	5.6	9
69	A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. Journal of Plant Research, 2010, 123, 807-813.	2.4	106
70	Rice Expression Atlas In Reproductive Development. Plant and Cell Physiology, 2010, 51, 2060-2081.	3.1	134
71	<i>Arabidopsis</i> dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6094-6099.	7.1	142
72	Strigolactones Negatively Regulate Mesocotyl Elongation in Rice during Germination and Growth in Darkness. Plant and Cell Physiology, 2010, 51, 1136-1142.	3.1	109

#	Article	IF	Citations
73	The FtsH Protease Heterocomplex in <i>Arabidopsis</i> : Dispensability of Type-B Protease Activity for Proper Chloroplast Development. Plant Cell, 2010, 22, 3710-3725.	6.6	57
74	The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Gene, 2010, 454, 39-46.	2.2	69
75	Rice-Specific Mitochondrial Iron-Regulated Gene (MIR) Plays an Important Role in Iron Homeostasis. Molecular Plant, 2009, 2, 1059-1066.	8.3	49
76	Functional association of cell death suppressor, Arabidopsis Bax inhibitorâ€1, with fatty acid 2â€hydroxylation through cytochrome <i>b</i> _{<i>5</i>} . Plant Journal, 2009, 58, 122-134.	5.7	75
77	Arabidopsis dynaminâ€related proteins DRP3A and DRP3B are functionally redundant in mitochondrial fission, but have distinct roles in peroxisomal fission. Plant Journal, 2009, 58, 388-400.	5.7	115
78	Arabidopsis dynamin-related protein DRP2B is co-localized with DRP1A on the leading edge of the forming cell plate. Plant Cell Reports, 2008, 27, 1581-1586.	5.6	46
79	Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta, 2008, 227, 517-526.	3.2	141
80	Transfer of rice mitochondrial ribosomal protein L6 gene to the nucleus: acquisition of the 5'-untranslated region via a transposable element. BMC Evolutionary Biology, 2008, 8, 314.	3.2	7
81	Abiotic Stress. Biotechnology in Agriculture and Forestry, 2008, , 337-355.	0.2	3
82	Various Spatiotemporal Expression Profiles of Anther-Expressed Genes in Rice. Plant and Cell Physiology, 2008, 49, 1417-1428.	3.1	118
83	Substitution of the Gene for Chloroplast RPS16 Was Assisted by Generation of a Dual Targeting Signal. Molecular Biology and Evolution, 2008, 25, 1566-1575.	8.9	112
84	<i>Arabidopsis</i> ELONGATED MITOCHONDRIA1 Is Required for Localization of DYNAMIN-RELATED PROTEIN3A to Mitochondrial Fission Sites. Plant Cell, 2008, 20, 1555-1566.	6.6	89
85	Mitochondrial Dynamics in Plant Male Gametophyte Visualized by Fluorescent Live Imaging. Plant and Cell Physiology, 2008, 49, 1074-1083.	3.1	44
86	Selective labeling of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein. , 2008, , .		0
87	Separated Transcriptomes of Male Gametophyte and Tapetum in Rice: Validity of a Laser Microdissection (LM) Microarray. Plant and Cell Physiology, 2008, 49, 1407-1416.	3.1	109
88	Presence of a Latent Mitochondrial Targeting Signal in Gene on Mitochondrial Genome. Molecular Biology and Evolution, 2008, 25, 1791-1793.	8.9	16
89	Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes and Genetic Systems, 2007, 82, 361-366.	0.7	82
90	Tracking a Single Organelle with Two-Photon Protein Conversion. Optics and Photonics News, 2007, 18, 20.	0.5	11

#	Article	IF	CITATIONS
91	Single-organelle tracking by two-photon conversion. Optics Express, 2007, 15, 2490.	3.4	46
92	Loss of the rpl32 gene from the chloroplast genome and subsequent acquisition of a preexisting transit peptide within the nuclear gene in Populus. Gene, 2007, 402, 51-56.	2.2	92
93	Mitochondria use actin filaments as rails for fast translocation in Arabidopsis and tobacco cells. Plant Biotechnology, 2007, 24, 441-447.	1.0	34
94	Imaging of plant dynamin-related proteins and clathrin around the plasma membrane by variable incidence angle fluorescence microscopy. Plant Biotechnology, 2007, 24, 449-455.	1.0	22
95	Isolation and characterization of the pea cytochrome c oxidase Vb gene. Genome, 2006, 49, 1481-1489.	2.0	4
96	A Point Mutation of Adh1 Gene is Involved in the Repression of Coleoptile Elongation under Submergence in Rice. Breeding Science, 2006, 56, 69-74.	1.9	45
97	Different amounts of DNA in each mitochondrion in rice root. Genes and Genetic Systems, 2006, 81, 215-218.	0.7	32
98	Evidence for Transit Peptide Acquisition through Duplication and Subsequent Frameshift Mutation of a Preexisting Protein Gene in Rice. Molecular Biology and Evolution, 2006, 23, 2405-2412.	8.9	13
99	Promoter Shuffling at a Nuclear Gene for Mitochondrial RPL27. Involvement of Interchromosome and Subsequent Intrachromosome Recombinations. Plant Physiology, 2006, 141, 702-710.	4.8	14
100	The Mitochondrial Fission Regulator DRP3B Does Not Regulate Cell Death in Plants. Annals of Botany, 2006, 97, 1145-1149.	2.9	6
101	Dynamic and Reversible Changes in Histone H3-Lys4 Methylation and H3 Acetylation Occurring at Submergence-inducible Genes in Rice. Plant and Cell Physiology, 2006, 47, 995-1003.	3.1	153
102	Conservation and Diversification of Meristem Maintenance Mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 Gene. Plant and Cell Physiology, 2006, 47, 1591-1602.	3.1	159
103	Ethylene Promotes Submergence-Induced Expression of OsABA8ox1, a Gene that Encodes ABA 8'-Hydroxylase in Rice. Plant and Cell Physiology, 2006, 48, 287-298.	3.1	223
104	Involvement of aldehyde dehydrogenase in alleviation of post-anoxic injury in rice., 2006, , 111-119.		5
105	Analysis of Expression of Genes for Mitochondrial Aldehyde Dehydrogenase in Maize during Submergence and Following Re-aeration. Breeding Science, 2006, 56, 365-370.	1.9	5
106	OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes and Genetic Systems, 2005, 80, 135-139.	0.7	158
107	Mammalian Bax initiates plant cell death through organelle destruction. Plant Cell Reports, 2005, 24, 408-417.	5.6	43
108	Anaconda, a new class of transposon belonging to the Mu superfamily, has diversified by acquiring host genes during rice evolution. Molecular Genetics and Genomics, 2005, 274, 606-15.	2.1	12

#	Article	IF	Citations
109	Plant mitochondrial fission and fusion. Plant Biotechnology, 2005, 22, 415-418.	1.0	5
110	Mitochondrial Behaviour in the Early Stages of ROS Stress Leading to Cell Death in Arabidopsis thaliana. Annals of Botany, 2005, 96, 337-342.	2.9	83
111	Tillering Behavior of the Ricefine culm 1Mutant. Plant Production Science, 2005, 8, 68-70.	2.0	8
112	Translocation of a 190-kb mitochondrial fragment into rice chromosome 12 followed by the integration of four retrotransposons. International Journal of Biological Sciences, 2005, 1, 110-113.	6.4	13
113	A Rice Dynamin-like Protein, OsDRP3A, Is Involved in Mitochondrial Fission. Breeding Science, 2004, 54, 367-372.	1.9	9
114	Arabidopsis Dynamin-Like Protein 2a (ADL2a), Like ADL2b, is Involved in Plant Mitochondrial Division. Plant and Cell Physiology, 2004, 45, 236-242.	3.1	116
115	Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7805-7808.	7.1	281
116	Isolation of mutants with aberrant mitochondrial morphology from Arabidopsis thaliana. Genes and Genetic Systems, 2004, 79, 301-305.	0.7	26
117	Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant Journal, 2003, 34, 417-425.	5.7	90
118	Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice. FEBS Letters, 2003, 546, 369-373.	2.8	80
119	Involvement of N-terminal region in mitochondrial targeting of rice RPS10 and RPS14 proteins. Plant Science, 2003, 164, 1047-1055.	3.6	9
120	Organ-specific expressions and chromosomal locations of two mitochondrial aldehyde dehydrogenase genes from rice (Oryza sativa L.), ALDH2a and ALDH2b. Gene, 2003, 305, 195-204.	2.2	32
121	The rice pyruvate decarboxylase 3 gene, which lacks introns, is transcribed in mature pollen. Journal of Experimental Botany, 2003, 55, 145-146.	4.8	7
122	A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5727-5731.	7.1	200
123	AOX1c, a novel rice gene for alternative oxidase; Comparison with rice AOX1a and AOX1b Genes and Genetic Systems, 2002, 77, 31-38.	0.7	53
124	ABA-Independent Expression of Rice Alternative Oxidase Genes under Environmental Stresses Plant Biotechnology, 2002, 19, 187-190.	1.0	12
125	ATP synthesis inhibitors as well as respiratory inhibitors increase steady-state level of alternative oxidase mRNA in Arabidopsis thaliana. Journal of Plant Physiology, 2001, 158, 241-245.	3.5	47
126	Characterization and expression of the genes for cytochrome c oxidase subunit VIb (COX6b) from rice and Arabidopsis thaliana. Gene, 2001, 264, 233-239.	2.2	22

#	Article	IF	CITATIONS
127	Numerous and highly developed tubular projections from plastids observed in Tobacco epidermal cells. Plant Science, 2001, 160, 449-454.	3.6	40
128	The gene for alternative oxidase-2(AOX2) from Arabidopsis thaliana consists of five exons unlike other AOX genes and is transcribed at an early stage during germination Genes and Genetic Systems, 2001, 76, 89-97.	0.7	82
129	Decreased Transcription of a Gene Encoding Putative Mitochondrial Aldehyde Dehydrogenase in Barley (Hordeum vulgare L.) under Submerged Conditions Plant Biotechnology, 2001, 18, 223-228.	1.0	3
130	Characterization of two cDNA clones encoding isozymes of the F1FO-ATPase inhibitor protein of rice mitochondria. Planta, 2000, 210, 188-194.	3.2	17
131	Expression of a Gene Encoding Mitochondrial Aldehyde Dehydrogenase in Rice Increases under Submerged Conditions. Plant Physiology, 2000, 124, 587-598.	4.8	119
132	Molecular and cellular characterizations of a cDNA clone encoding a novel isozyme of aldehyde dehydrogenase from rice. Gene, 2000, 249, 67-74.	2.2	29
133	Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in expression of the alternative oxidase 1a gene. FEBS Letters, 2000, 471, 201-204.	2.8	61
134	AtUCP2: a Novel Isoform of the Mitochondrial Uncoupling Protein of Arabidopsis thaliana. Plant and Cell Physiology, 1999, 40, 1160-1166.	3.1	62
135	A novel plant nuclear gene encoding chloroplast ribosomal protein S9 has a transit peptide related to that of rice chloroplast ribosomal protein L12. FEBS Letters, 1999, 450, 231-234.	2.8	29
136	Differential changes in copy numbers of rice mitochondrial plasmid-like DNAs and main mitochondrial genomic DNAs that depend on temperature. Current Genetics, 1998, 33, 437-444.	1.7	3
137	Phylogenetic relationships in the genus Nelumbo based on polymorphism and quantitative variations in mitochondrial DNA Genes and Genetic Systems, 1998, 73, 39-44.	0.7	11
138	ã,∰fœ,ã,²ãfŽãfã,³ãf¼ãf‰è'‰ç'体ãfªãfœã,½ãf¼ãfã,¿ãf³ãf'ã,¯è³ªé₽ä¼åŁ13ãïL24ã®æ§‹é€ãï5'ä,Šæµé~域	ã ®è§ £æž :	Breeding Sci
139	Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. Gene, 1997, 203, 121-129.	2.2	138
140	Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Molecular Biology, 1997, 35, 585-596.	3.9	177
141	The gene for a subunit of an ABC-type heme transporter is transcribed together with the gene for subunit 6 of NADH dehydrogenase in rice mitochondria. Current Genetics, 1996, 29, 412-416.	1.7	11
142	Multiple initiation sites for transcription of a gene for subunit 1 of F1-ATPase (atp1) in rice mitochondria. Current Genetics, 1996, 29, 417-422.	1.7	7
143	Molecular cloning and nucleotide sequencing of nuclear genes coding for the chloroplast ribosomal proteins L13, L24, L28 of rice (Oryza sativa L.). Plant Science, 1996, 121, 167-174.	3.6	6
144	Detailed mapping of the chloroplast genome of barley, Hordeum vulgare L Genes and Genetic Systems, 1996, 71, 175-180.	0.7	1

#	Article	IF	CITATIONS
145	RNA editing of transcripts of the gene for apocytochrome b(cob) in rice mitochondria Genes and Genetic Systems, 1996, 71, 85-89.	0.7	5
146	A chloroplast-derived sequence is utilized as a source of promoter sequences for the gene for		