
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3644529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Characterization Using Laser-Induced Breakdown Spectroscopy of Products Released from Lithium-Ion Battery Cells at Thermal Runaway Conditions. Applied Spectroscopy, 2022, 76, 967-977.	2.2	4
2	Aerosol measurements with laser-induced breakdown spectroscopy and conditional analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106107.	2.9	11
3	Laser-Induced Breakdown Spectroscopy and Principal Component Analysis for the Classification of Spectra from Gold-Bearing Ores. Applied Spectroscopy, 2020, 74, 42-54.	2.2	25
4	Raman spectroscopy for detection of ammonium nitrate as an explosive precursor used in improvised explosive devices. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 233, 118204.	3.9	26
5	LIBS for aerosol analysis. , 2020, , 499-535.		4
6	Plasma chemistry produced during laser ablation of graphite in air, argon, helium and nitrogen. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 166, 105800.	2.9	23
7	Laser ablation at high repetition rate coupled to laser-induced breakdown spectroscopy for analysis of non-matrix matched standards. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 166, 105795.	2.9	6
8	A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	12
9	Magnesium-manganese oxides for high temperature thermochemical energy storage. Journal of Energy Storage, 2019, 21, 599-610.	8.1	50
10	Effect of laser irradiance and wavelength on the analysis of gold- and silver-bearing minerals with laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 145, 86-95.	2.9	21
11	Magnesioferrites for solar thermochemical fuel production. Solar Energy, 2018, 163, 1-15.	6.1	16
12	Uncertainty quantification for modeling pulsed laser ablation of aluminum considering uncertainty in the temperature-dependent absorption coefficient. International Journal of Heat and Mass Transfer, 2018, 120, 515-522.	4.8	8
13	Ablation Characteristics of Nanosecond Laser Pulsed Ablation of Aluminum. , 2018, , .		1
14	Analysis of Air Cargo Temperature Variations During Transport Operations. Transactions of the ASABE, 2018, 61, 723-732.	1.1	6
15	On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 148, 65-82.	2.9	160
16	Theoretical and Experimental Investigation of Solar Methane Reforming through the Nonstoichiometric Ceria Redox Cycle. Energy Technology, 2017, 5, 2138-2149.	3.8	41
17	Response to Rebuttal to "Theoretical and Experimental Investigation of Solar Methane Reforming through the Nonstoichiometric Ceria Redox Cycle†Energy Technology, 2017, 5, 2153-2155.	3.8	1
18	Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 136, 106-115.	2.9	34

#	Article	IF	CITATIONS
19	Differential Laser-Induced Perturbation Spectroscopy Method for Biological Material Classification. , 2016, , .		0
20	Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe. Applied Spectroscopy, 2016, 70, 676-687.	2.2	3
21	Differential Laserâ€Induced Perturbation Spectroscopy for Analysis of Mixtures of the Fluorophores <scp>l</scp> â€Phenylalanine, <scp>l</scp> â€Tyrosine and <scp>l</scp> â€Tryptophan Using a Fluorescence Probe. Photochemistry and Photobiology, 2016, 92, 658-666.	2.5	4
22	Interaction between iron based compound and soot particles in diffusion flame. Energy, 2016, 116, 933-941.	8.8	25
23	A transient heat transfer model for high temperature solar thermochemical reactors. International Journal of Hydrogen Energy, 2016, 41, 2307-2325.	7.1	25
24	Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO ₃ /SrO Supported on SrZrO ₃ . ChemSusChem, 2015, 8, 3793-3798.	6.8	58
25	Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides. Journal of Biomedical Optics, 2015, 20, 047006.	2.6	3
26	Iron oxidation kinetics for H2 and CO production via chemical looping. International Journal of Hydrogen Energy, 2015, 40, 1675-1689.	7.1	15
27	The use of multi-element aerosol particles for determining temporal variations in temperature and electron density in laser-induced plasmas in support of quantitative laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 109, 1-7.	2.9	10
28	Investigation of long term reactive stability of ceria for use in solar thermochemical cycles. Energy, 2015, 89, 924-931.	8.8	29
29	Fiber-coupled laser-induced breakdown and Raman spectroscopy for flexible sample characterization with depth profiling capabilities. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 100, 116-122.	2.9	11
30	Double-pulse laser ablation coupled to laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 98, 48-53.	2.9	9
31	Plasmonic Diagnostics for Tribology: In Situ Observations Using Surface Plasmon Resonance in Combination with Surface-Enhanced Raman Spectroscopy. Tribology Letters, 2013, 49, 95-102.	2.6	18
32	Laser ablation methods for analysis of urinary calculi: Comparison study based on calibration pellets. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 81, 43-49.	2.9	29
33	Laser ablation–laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils. Applied Optics, 2013, 52, 2470.	1.8	25
34	Comparative evaluation of differential laser-induced perturbation spectroscopy as a technique to discriminate emerging skin pathology. Journal of Biomedical Optics, 2012, 17, 067002.	2.6	5
35	Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) as a Measurement Technique for Evaluation of Total Elemental Concentration in Soils. Applied Spectroscopy, 2012, 66, 99-106.	2.2	60
36	Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Applied Spectroscopy, 2012, 66, 347-419.	2.2	1,160

#	Article	IF	CITATIONS
37	Heat Treatments Modify the Tribological Properties of Nickel Boron Coatings. ACS Applied Materials & Interfaces, 2012, 4, 3069-3076.	8.0	31
38	A Kinetic Model for Ammonia Adsorption on a Titanium Nitride Surface. IEEE Sensors Journal, 2012, 12, 843-848.	4.7	2
39	Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation. Materials, 2012, 5, 2003-2014.	2.9	5
40	Heat Transfer Between Colliding Surfaces and Particles. Journal of Heat Transfer, 2012, 134, .	2.1	6
41	Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. Journal of Analytical Atomic Spectrometry, 2012, 27, 1110.	3.0	63
42	Real-time measurement of ArF excimer laser corneal tissue ablation rates using cross-correlation of laser waveforms. Optics Express, 2011, 19, 4231.	3.4	6
43	Differential laser-induced perturbation spectroscopy using a deep-ultraviolet excimer laser. Optics Letters, 2011, 36, 2116.	3.3	6
44	Heat Transfer Between Colliding Surfaces and Particles. , 2011, , .		0
45	Oxidation reaction kinetics for the steam-iron process in support of hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 15125-15135.	7.1	21
46	A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems. Tribology Letters, 2011, 42, 301-310.	2.6	575
47	The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 179-185.	2.9	16
48	High-Temperature Vapor Phase Lubrication Using Carbonaceous Gases. Tribology Letters, 2010, 40, 3-9.	2.6	13
49	Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 1033-1040.	2.9	19
50	Double-pulse and single-pulse laser-induced breakdown spectroscopy for distinguishing between gaseous and particulate phase analytes. Applied Optics, 2010, 49, C110.	2.1	31
51	Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma—Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community. Applied Spectroscopy, 2010, 64, 335A-336A.	2.2	834
52	100% Efficient Sub-Nanoliter Sample Introduction in Laser-Induced Breakdown Spectroscopy and Inductively Coupled Plasma Spectrometry: Implications for Ultralow Sample Volumes. Analytical Chemistry, 2010, 82, 2568-2573.	6.5	55
53	Study of analyte dissociation and diffusion in laser-induced plasmas: implications for laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2010, 25, 1921.	3.0	21
54	Laser-induced breakdown spectroscopy (LIBS) for detection of ammonium nitrate in soils. Proceedings of SPIE, 2009, , .	0.8	6

#	Article	IF	CITATIONS
55	Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: Temporal considerations. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1153-1158.	2.9	34
56	Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response. Journal of Analytical Atomic Spectrometry, 2009, 24, 1665.	3.0	81
57	Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1038-1046.	2.9	46
58	Effects of laser repetition rate on corneal tissue ablation for 193â€nm excimer laser light. Lasers in Surgery and Medicine, 2008, 40, 483-493.	2.1	29
59	Numerical simulation of laser-induced breakdown spectroscopy: Modeling of aerosol analysis with finite diffusion and vaporization effects. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 293-304.	2.9	23
60	Reduction of soot emissions by iron pentacarbonyl in isooctane diffusion flames. Combustion and Flame, 2008, 154, 164-180.	5.2	46
61	Excimer Laser Photofragmentation/Fragment Detection for Analysis of the Oxygenated Hydrocarbon Ethyl-3-Ethyoxypropionate: Implications for Atmospheric Monitoring. Applied Spectroscopy, 2008, 62, 1028-1037.	2.2	0
62	Alternative Statistical Methods for Spectral Data Processing: Applications to Laser-Induced Breakdown Spectroscopy of Gaseous and Aerosol Systems. Applied Spectroscopy, 2008, 62, 1144-1152.	2.2	24
63	Laser-induced breakdown spectroscopy (LIBS) for aerosol analysis. , 2008, , .		0
64	Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 265.	1.5	23
65	The effect of multi-component aerosol particles on quantitative laser-induced breakdown spectroscopy: Consideration of localized matrix effects. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1466-1474.	2.9	54
66	Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: Analyte interactions and signal enhancement. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1390-1398.	2.9	47
67	Plasmaâ^'Particle Interactions in a Laser-Induced Plasma:Â Implications for Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 2006, 78, 1509-1514.	6.5	68
68	Laser-Induced Breakdown Spectroscopy for Ambient Air Particulate Monitoring: Correlation of Total and Speciated Aerosol Particle Counts. Applied Spectroscopy, 2006, 60, 237-245.	2.2	29
69	Dual-pulse Laser Induced Breakdown Spectroscopy for analysis of gaseous and aerosol systems: Plasma-analyte interactions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 788-796.	2.9	59
70	Dual-pulse laser induced breakdown spectroscopy: Time-resolved transmission and spectral measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 968-974.	2.9	37
71	Frictional anisotropy of oriented carbon nanotube surfaces. Tribology Letters, 2005, 18, 59-62.	2.6	136
72	Calibration Effects for Laser-Induced Breakdown Spectroscopy of Gaseous Sample Streams:  Analyte Response of Gas-Phase Species versus Solid-Phase Species. Analytical Chemistry, 2005, 77, 1118-1124.	6.5	72

#	Article	IF	CITATIONS
73	Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering. Applied Optics, 2005, 44, 4211.	2.1	44
74	Hydrogen Leak Detection Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2005, 59, 348-353.	2.2	38
75	Feasibility of Detection and Identification of Individual Bioaerosols Using Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 2005, 77, 631-638.	6.5	95
76	Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 327-333.	2.9	72
77	Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste. Waste Management, 2004, 24, 413-424.	7.4	80
78	Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: applications to LIBS. Journal of Analytical Atomic Spectrometry, 2004, 19, 1289.	3.0	23
79	Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation. Applied Optics, 2004, 43, 5443.	2.1	21
80	Determination of Excimer Laser Ablation Rates of Corneal Tissue Using Wax Impressions of Ablation Craters and White-Light Interferometry. Ophthalmic Surgery Lasers and Imaging Retina, 2004, 35, 41-51.	0.7	12
81	Laser-induced breakdown spectroscopy: an introduction to the feature issue. Applied Optics, 2003, 42, 5937.	2.1	18
82	Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy. Applied Optics, 2003, 42, 6016.	2.1	44
83	Conditional data processing for single-shot spectral analysis by use of laser-induced breakdown spectroscopy. Applied Optics, 2003, 42, 6022.	2.1	26
84	Geiger photodiode array for compact, lightweight laser-induced breakdown spectroscopy instrumentation. Applied Optics, 2003, 42, 6072.	2.1	7
85	Assessment of Transient Changes in Corneal Hydration Using Confocal Raman Spectroscopy. Cornea, 2003, 22, 363-370.	1.7	21
86	Laser-Induced Breakdown Spectroscopy for the Analysis of Cobalt—Chromium Orthopaedic Wear Debris Particles. Applied Spectroscopy, 2002, 56, 984-993.	2.2	7
87	On-Line Sorting of Wood Treated with Chromated Copper Arsenate Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2002, 56, 1337-1344.	2.2	54
88	Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 2002, 74, 5450-5454.	6.5	90
89	Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2002, 17, 1534-1539.	3.0	35
90	Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 779-790.	2.9	100

#	Article	IF	CITATIONS
91	Temporal Gating for the Optimization of Laser-Induced Breakdown Spectroscopy Detection and Analysis of Toxic Metals. Applied Spectroscopy, 2001, 55, 1312-1319.	2.2	93
92	Detection of Gaseous and Particulate Fluorides by Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2001, 55, 1455-1461.	2.2	54
93	The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 419-430.	2.9	36
94	On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 851-864.	2.9	170
95	Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation. Review of Scientific Instruments, 2001, 72, 3706-3713.	1.3	33
96	Laser Induced Plasma Spectroscopy for the Characterization of Aerosols and Particulates. KONA Powder and Particle Journal, 2001, 19, 25-33.	1.7	10
97	Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals. Waste Management, 2000, 20, 455-462.	7.4	123
98	Detection and Analysis of Aerosol Particles by Laser-Induced Breakdown Spectroscopy. Aerosol Science and Technology, 2000, 33, 30-48.	3.1	202
99	Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles. Applied Physics Letters, 1998, 72, 2960-2962.	3.3	83
100	Systematic study of diamond film deposition in an atmospheric-pressure stagnation-flow flame reactor. Diamond and Related Materials, 1998, 7, 1320-1327.	3.9	1
101	Modeling Analysis for the Optimization of Diamond Deposition in a Stagnation-Flow Flame Reactor. Combustion Science and Technology, 1997, 126, 175-199.	2.3	2
102	Discrete Particle Detection and Metal Emissions Monitoring Using Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 1997, 51, 1836-1844.	2.2	136
103	Analysis of polyethylene wear debris using micro-Raman spectroscopy: A report on the presence of beta-carotene. , 1997, 35, 31-37.		15
104	Largeâ€area diamond deposition in an atmospheric pressure stagnationâ€flow reactor. Applied Physics Letters, 1996, 68, 2158-2160.	3.3	16
105	Induction of Lambda Prophage by 213 nm Laser Radiation: A Quantitative Comparison with 193 nm Excimer Radiation Using Image Analysis. Photochemistry and Photobiology, 1996, 63, 281-285.	2.5	2
106	Characterization of submicron polyethylene wear debris from synovial-fluid samples of revised knee replacements using a light-scattering technique. , 1996, 31, 355-363.		21
107	Dynamics of ablation plume particles generated during excimer laser corneal ablation. Lasers in Surgery and Medicine, 1995, 16, 384-389.	2.1	36
108	Ablation plume particle dynamics during excimer laser ablation of polyimide. Journal of Applied Physics, 1995, 77, 2759-2766.	2.5	12

#	Article	IF	CITATIONS
109	Optical properties of polyimide during ArF excimer laser ablation. Journal of Applied Physics, 1994, 76, 1830-1832.	2.5	4
110	Enhanced ArF laser absorption in a collagen target under ablative conditions. Lasers in Surgery and Medicine, 1994, 15, 107-111.	2.1	14
111	On the optical properties of submicrometre inhomogeneous flame particulates. Journal Physics D: Applied Physics, 1993, 26, 1851-1858.	2.8	5
112	The role of iron additives in sooting premixed flames. Proceedings of the Combustion Institute, 1992, 24, 1007-1014.	0.3	20
113	Extinction efficiencies of elongated soot particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 1989, 42, 219-224.	2.3	9