Fahmi Bedoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3644257/publications.pdf

Version: 2024-02-01

		1040056	940533	
17	341	9	16	
papers	citations	h-index	g-index	
17	17	17	638	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Multiscale-Engineered Muscle Constructs: PEG Hydrogel Micro-Patterning on an Electrospun PCL Mat Functionalized with Gold Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 260.	4.1	7
2	Coaxial electrospinning process toward optimal nanoparticle dispersion in polymeric matrix. Polymer Composites, 2021, 42, 1565-1573.	4.6	8
3	Monitoring mechanical stimulation for optimal tendon tissue engineering: A mechanical and biological multiscale study. Journal of Biomedical Materials Research - Part A, 2021, 109, 1881-1892.	4.0	5
4	Focus on the deformation mechanism at the interfacial layer in nano-reinforced polymers: A molecular dynamics study of silica - poly(methyl methacrylate) nano-composite. Mechanics of Materials, 2021, 159, 103903.	3. 2	3
5	Interfacial Interactions in a Model Composite Material: Insights into α → β Phase Transition of the Magnetite Reinforced Poly(Vinylidene Fluoride) Systems by All-Atom Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2021, 125, 21635-21644.	3.1	11
6	Multiscale analysis of nanoparticles size effects on thermal, elastic, and viscoelastic properties of nanoâ€reinforced polymers. Polymer Engineering and Science, 2020, 60, 1773-1784.	3.1	5
7	The combination of a polyâ€caprolactone/nanoâ€hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1570-1580.	2.7	27
8	Electrospinning of biomedically relevant multi-region scaffolds: From honeycomb to randomly-oriented microstructure. Polymer, 2020, 202, 122606.	3.8	7
9	In Vitro Bone Cell Response to Tensile Mechanical Solicitations: Is There an Optimal Protocol?. Biotechnology Journal, 2019, 14, e1800358.	3.5	O
10	Compatibility effects of modified montmorillonite on elastic and visco-elastic properties of nano-reinforced Poly(lactic acid): Experimental and modeling study. Polymer Testing, 2018, 70, 441-448.	4.8	5
11	Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. Materials, 2018, 11, 1116.	2.9	103
12	Poly(ε-caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction. ACS Biomaterials Science and Engineering, 2018, 4, 3317-3326.	5. 2	44
13	The Osteogenic and Tenogenic Differentiation Potential of C3H10T1/2 (Mesenchymal Stem Cell Model) Cultured on PCL/PLA Electrospun Scaffolds in the Absence of Specific Differentiation Medium. Materials, 2017, 10, 1387.	2.9	27
14	Experimental evidence of size effect in nano-reinforced polymers: Case of silica reinforced PMMA. Polymer Testing, 2016, 56, 337-343.	4.8	37
15	Mechanical investigation of confined amorphous phase in semicrystalline polymers: Case of PET and PLA. Polymer Engineering and Science, 2015, 55, 397-405.	3.1	32
16	Elastic properties prediction of nano-clay reinforced polymers using hybrid micromechanical models. Computational Materials Science, 2012, 65, 309-314.	3.0	9
17	Linear viscoelastic behavior of poly(ethylene terephtalate) above Tg amorphous viscoelastic properties Vs crystallinity: Experimental and micromechanical modeling. Polymer, 2010, 51, 5229-5235.	3.8	11