
Nicolas Fasel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3641086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assigning metabolic rate measurements to torpor and euthermy in heterothermic endotherms: â€~torpor', a new package for R. Biology Open, 2022, 11, .	1.2	Ο
2	Energy allocation shifts from sperm production to self-maintenance at low temperatures in male bats. Scientific Reports, 2022, 12, 2138.	3.3	5
3	The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens, 2022, 11, 409.	2.8	11
4	DNA methylation predicts age and provides insight into exceptional longevity of bats. Nature Communications, 2021, 12, 1615.	12.8	80
5	Malignant Peripheral Nerve Sheath Tumour in a Seba's Short-Tailed Bat (Carollia perspicillata). Journal of Comparative Pathology, 2021, 184, 72-76.	0.4	0
6	Latrocimicinae completes the phylogeny of Cimicidae: meeting old morphologic data rather than modern host phylogeny. Parasites and Vectors, 2021, 14, 441.	2.5	1
7	Morphological and physiological consequences of a dietary restriction during early life in bats. Behavioral Ecology, 2020, 31, 475-486.	2.2	5
8	Penis morphology facilitates identification of cryptic African bat species. Journal of Mammalogy, 2020, 101, 1392-1399.	1.3	5
9	Behind the Scenes: Nod-Like Receptor X1 Controls Inflammation and Metabolism. Frontiers in Cellular and Infection Microbiology, 2020, 10, 609812.	3.9	15
10	Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6491-6501.	7.1	122
11	Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats. Journal of Experimental Biology, 2020, 223, .	1.7	7
12	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
13	Viruses of protozoan parasites and viral therapy: Is the time now right?. Virology Journal, 2020, 17, 142.	3.4	22
14	Viral Double-Stranded RNA Detection by DNase I and Nuclease S1 digestions in Leishmania parasites. Bio-protocol, 2020, 10, e3598.	0.4	2
15	Experimental manipulation of reproductive tactics in Seba's short-tailed bats: consequences on sperm quality and oxidative status. Environmental Epigenetics, 2019, 65, 609-616.	1.8	2
16	Amazonian Phlebovirus (Bunyaviridae) potentiates the infection of Leishmania (Leishmania) amazonensis: Role of the PKR/IFN1/IL-10 axis. PLoS Neglected Tropical Diseases, 2019, 13, e0007500.	3.0	19
17	A guide for ecologists to build a low-cost selective trap using radio frequency identification detection. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	4
18	TLR2 Signaling in Skin Nonhematopoietic Cells Induces Early Neutrophil Recruitment in Response to Leishmania major Infection. Journal of Investigative Dermatology, 2019, 139, 1318-1328.	0.7	28

#	Article	IF	CITATIONS
19	First cryopreservation of phyllostomid bat sperm. Theriogenology, 2019, 131, 28-31.	2.1	5
20	Valuable carcasses: postmortem preservation of fatty acid composition in heart tissue. , 2019, 7, coz005.		1
21	Modification of sperm fatty acid composition during epididymal maturation in bats. Reproduction, 2019, 157, 77-85.	2.6	3
22	Leishmania Parasite Quantification by Bioluminescence in Murine Models. Bio-protocol, 2019, 9, e3431.	0.4	5
23	The criminal association of Leishmania parasites and viruses. Current Opinion in Microbiology, 2018, 46, 65-72.	5.1	8
24	Importance of polyphosphate in the Leishmania life cycle. Microbial Cell, 2018, 5, 371-384.	3.2	15
25	Emerging Role for the PERK/elF2α/ATF4 in Human Cutaneous Leishmaniasis. Scientific Reports, 2017, 7, 17074.	3.3	29
26	Diet Induced Modifications of Fatty-Acid Composition in Mealworm Larvae (Tenebrio molitor). Journal of Food Research, 2017, 6, 22.	0.3	27
27	Systems Approach Reveals Nuclear Factor Erythroid 2-Related Factor 2/Protein Kinase R Crosstalk in Human Cutaneous Leishmaniasis. Frontiers in Immunology, 2017, 8, 1127.	4.8	44
28	Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid. PLoS Neglected Tropical Diseases, 2017, 11, e0005240.	3.0	31
29	Unveiling the Role of the Integrated Endoplasmic Reticulum Stress Response in Leishmania Infection – Future Perspectives. Frontiers in Immunology, 2016, 7, 283.	4.8	6
30	Raptor hunted by caspases. Cell Death and Disease, 2016, 7, e2242-e2242.	6.3	0
31	Severe Cutaneous Leishmaniasis in a Human Immunodeficiency Virus Patient Coinfected with Leishmania braziliensis and Its Endosymbiotic Virus. American Journal of Tropical Medicine and Hygiene, 2016, 94, 840-843.	1.4	27
32	Modification of sperm quality after sexual abstinence in Seba's short-tailed bat, <i>Carollia perspicillata</i> . Journal of Experimental Biology, 2016, 219, 1363-1368.	1.7	9
33	Alternative reproductive tactics and reproductive success in male <i>Carollia perspicillata</i> (Seba's) Tj ETQq1 1	0,784314 1.7	rgBT /Overl
34	Presence of <i>Leishmania</i> RNA Virus 1 in <i>Leishmania guyanensis</i> Increases the Risk of First-Line Treatment Failure and Symptomatic Relapse. Journal of Infectious Diseases, 2016, 213, 105-111.	4.0	104
35	Electroejaculation and semen buffer evaluation in the microbat Carollia perspicillata. Theriogenology, 2015, 83, 904-910.	2.1	14
36	MyD88 and TLR9 Dependent Immune Responses Mediate Resistance to Leishmania guyanensis Infections, Irrespective of Leishmania RNA Virus Burden. PLoS ONE, 2014, 9, e96766.	2.5	30

#	Article	IF	CITATIONS
37	Leishmania aethiopica Field Isolates Bearing an Endosymbiontic dsRNA Virus Induce Pro-inflammatory Cytokine Response. PLoS Neglected Tropical Diseases, 2014, 8, e2836.	3.0	79
38	When bats are boxing: aggressive behaviour and communication in male Seba's short-tailed fruit bat. Animal Behaviour, 2014, 98, 149-156.	1.9	41
39	The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends in Parasitology, 2014, 30, 412-422.	3.3	72
40	Crossâ€presenting dendritic cells are required for control of <i><scp>L</scp>eishmania major</i> infection. European Journal of Immunology, 2014, 44, 1422-1432.	2.9	46
41	The therapeutic potential of immune cross-talk in leishmaniasis. Clinical Microbiology and Infection, 2013, 19, 119-130.	6.0	27
42	Role of Toll-Like Receptor 9 Signaling in Experimental Leishmania braziliensis Infection. Infection and Immunity, 2013, 81, 1575-1584.	2.2	34
43	Detection of Leishmania RNA Virus in Leishmania Parasites. PLoS Neglected Tropical Diseases, 2013, 7, e2006.	3.0	89
44	Backseat drivers: the hidden influence of microbial viruses on disease. Current Opinion in Microbiology, 2012, 15, 538-545.	5.1	12
45	Leishmania RNA virus: when the host pays the toll. Frontiers in Cellular and Infection Microbiology, 2012, 2, 99.	3.9	118
46	Are protozoan metacaspases potential parasite killers?. Parasites and Vectors, 2011, 4, 26.	2.5	40
47	<i>Leishmania</i> RNA Virus Controls the Severity of Mucocutaneous Leishmaniasis. Science, 2011, 331, 775-778.	12.6	344
48	Type I Interferon Drives Dendritic Cell Apoptosis via Multiple BH3-Only Proteins following Activation by PolyIC In Vivo. PLoS ONE, 2011, 6, e20189.	2.5	57
49	Plasmodium falciparum Metacaspase PfMCA-1 Triggers a z-VAD-fmk Inhibitable Protease to Promote Cell Death. PLoS ONE, 2011, 6, e23867.	2.5	37
50	Processing of metacaspase into a cytoplasmic catalytic domain mediating cell death in <i>Leishmania major</i> . Molecular Microbiology, 2011, 79, 222-239.	2,5	56
51	Muco-cutaneous leishmaniasis in the New World. Virulence, 2011, 2, 547-552.	4.4	44
52	The activity of an insectivorous bat <i>Neoromicia nana</i> on tracks in logged and unlogged forest in tropical Africa. African Journal of Ecology, 2010, 48, 1083-1091.	0.9	10
53	Apoptotic markers in protozoan parasites. Parasites and Vectors, 2010, 3, 104.	2.5	113
54	Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasites and Vectors, 2010, 3, 107.	2.5	97

#	Article	IF	CITATIONS
55	Cathepsin B-like and cell death in the unicellular human pathogen Leishmania. Cell Death and Disease, 2010, 1, e71-e71.	6.3	34
56	The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nature Immunology, 2008, 9, 272-281.	14.5	282
57	An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death and Differentiation, 2008, 15, 113-122.	11.2	99
58	lmmunization with H1, HASPB1 and MML Leishmania proteins in a vaccine trial against experimental canine leishmaniasis. Vaccine, 2007, 25, 5290-5300.	3.8	66
59	Histone H1 regulates chromatin condensation in Leishmania parasites. Experimental Parasitology, 2007, 116, 83-87.	1.2	14
60	Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity. International Journal for Parasitology, 2007, 37, 161-172.	3.1	112
61	Comparative protein profiling identifies elongation factor-1β and tryparedoxin peroxidase as factors associated with metastasis in Leishmania guyanensis. Molecular and Biochemical Parasitology, 2006, 145, 254-264.	1.1	50
62	Resistance to Oxidative Stress Is Associated with Metastasis in Mucocutaneous Leishmaniasis. Journal of Infectious Diseases, 2006, 194, 1160-1167.	4.0	37
63	Genomic organization and gene expression in a chromosomal region of Leishmania major. Molecular and Biochemical Parasitology, 2004, 134, 233-243.	1.1	25
64	Type I signal peptidase from Leishmania is a target of the immune response in human cutaneous and visceral leishmaniasis. Molecular and Biochemical Parasitology, 2004, 135, 13-20.	1.1	13
65	Humoral and cellular immune responses against Type I cysteine proteinase of Leishmania infantum are higher in asymptomatic than symptomatic dogs selected from a naturally infected population. Veterinary Parasitology, 2004, 119, 107-123.	1.8	26
66	A recombinant rubella virus E1 glycoprotein as a rubella vaccine candidate. Vaccine, 2004, 23, 480-488.	3.8	11
67	Expression of cysteine proteinase type I and II of Leishmania infantum and their recognition by sera during canine and human visceral leishmaniasis. Experimental Parasitology, 2003, 103, 143-151.	1.2	38
68	Sense and antisense transcripts in the histone H1 (HIS-1) locus of Leishmania major. International Journal for Parasitology, 2003, 33, 965-975.	3.1	16
69	Enhanced sensitivity detection of protein immobilization by fluorescent interference on oxidized silicon. Biosensors and Bioelectronics, 2003, 19, 457-464.	10.1	41
70	Protection against Cutaneous Leishmaniasis in Outbred Vervet Monkeys, Using a Recombinant Histone H1 Antigen. Journal of Infectious Diseases, 2003, 188, 1250-1257.	4.0	50
71	Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis?. Cell Death and Differentiation, 2002, 9, 1126-1139.	11.2	141
72	A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine, 2001, 19, 3369-3375.	3.8	97

#	Article	IF	CITATIONS
73	Native-like, long synthetic peptides as components of sub-unit vaccines: practical and theoretical considerations for their use in humans. Molecular Immunology, 2001, 38, 415-422.	2.2	17
74	Long Synthetic Peptides as Biologically Active Proteins: The Example of the Chemokines. Biologicals, 2001, 29, 259-263.	1.4	6
75	Identification of Leishmania major cysteine proteinases as targets of the immune response in humans. Molecular and Biochemical Parasitology, 2001, 113, 35-43.	1.1	56
76	Expression and one-step purification of Plasmodium proteins in Dictyostelium. Molecular and Biochemical Parasitology, 2000, 111, 377-390.	1.1	10
77	Leishmania major:Histone H1 Gene Expression from thesw3Locus. Experimental Parasitology, 1999, 91, 151-160.	1.2	17
78	The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine, 1999, 18, 850-859.	3.8	47
79	Purification of recombinant proteins by chemical removal of the affinity tag. Applied Biochemistry and Biotechnology, 1998, 74, 95-103.	2.9	19
80	Histone H1 expression varies during the Leishmania major life cycle. Molecular and Biochemical Parasitology, 1997, 84, 215-227.	1.1	41
81	Synthesis and immunological characterization of 104-mer and 102-mer peptides corresponding to the N- and C-terminal regions of the Plasmodium falciparum CS protein. Molecular Immunology, 1995, 32, 1301-1309.	2.2	49
82	Minimal membrane and secreted μ poly(A) signals specify developmentally-regulated immunoglobulin heavy chain mRNA ratios without RNA splicing. Molecular Immunology, 1994, 31, 563-566.	2.2	0
83	Induction of macrophage nitric oxide production by interferon-Î ³ and tumor necrosis factor-α is enhanced by interleukin-10. European Journal of Immunology, 1993, 23, 2045-2048.	2.9	90
84	Identification of a histone H1-like gene expressed in Leishmania major. Molecular and Biochemical Parasitology, 1993, 62, 321-323.	1.1	34
85	Membrane Î ¹ ⁄4 poly(A) signal and $3\hat{\epsilon}^2$ flanking sequences function as a transcription terminator for immunoglobulin-encoding genes. Gene, 1992, 122, 297-304.	2.2	3
86	Dictyostelium discoideum as an expression host for the circumsporozoite protein of Plasmodium falciparum. Gene, 1992, 111, 157-163.	2.2	29
87	Highly inducible synthesis of heterologous proteins in epithelial cells carrying a glucocorticoid-responsive vector. Gene, 1992, 111, 199-206.	2.2	60
88	Translocation of the yeast Dolichol-phosphate-mannose synthase into microsomal membranes. Biochemical and Biophysical Research Communications, 1991, 174, 1337-1342.	2.1	6
89	Isolation from mouse fibroblasts of a cDNA encoding a new form of the fibroblast growth factor receptor (flg). Biochemical and Biophysical Research Communications, 1991, 178, 8-15.	2.1	12
90	In vitro attachment of glycosyl-inositolphospholipid anchor structures to mouse Thy-1 antigen and human decay-accelerating factor Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6858-6862.	7.1	28

#	Article	IF	CITATIONS
91	Protein-binding site at the immunoglobulin mu membrane polyadenylylation signal: possible role in transcription termination Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 9160-9164.	7.1	35
92	T cell receptor β chain gene rearrangements and Vβ gene usage in horse cytochromec-specific T cell hybridomas. European Journal of Immunology, 1987, 17, 657-661.	2.9	3
93	Nucleotide sequence of the 5′ noncoding region and part of thegaggene of mouse mammary tumor virus; identification of the 5′ splicing site for subgenomic mRNAs. Nucleic Acids Research, 1983, 11, 6943-6955.	14.5	53
94	Embryonic development of NMRI mice: relationship between the weight, age and ossification of embryos. Laboratory Animals, 1980, 14, 243-246.	1.0	1