## Olivia Reinaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3640981/publications.pdf

Version: 2024-02-01

81900 123424 4,798 143 39 61 citations g-index h-index papers 171 171 171 3383 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                            | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Calix[6]arenes and Zinc:Â Biomimetic Receptors for Neutral Molecules. Journal of the American Chemical Society, 2000, 122, 6183-6189.                                                                                                              | 13.7 | 174       |
| 2  | Biomimetic cavity-based metal complexes. Chemical Society Reviews, 2015, 44, 467-489.                                                                                                                                                              | 38.1 | 156       |
| 3  | Biomimetic and self-assembled calix[6]arene-based receptors for neutral molecules. Organic and Biomolecular Chemistry, 2009, 7, 2485.                                                                                                              | 2.8  | 120       |
| 4  | Electrografting of calix[4]arenediazonium salts to form versatile robust platforms for spatially controlled surface functionalization. Nature Communications, 2012, 3, 1130.                                                                       | 12.8 | 118       |
| 5  | Calixarene-Based Copper(I) Complexes as Models for Monocopper Sites in Enzymes. Angewandte Chemie - International Edition, 1998, 37, 2732-2735.                                                                                                    | 13.8 | 116       |
| 6  | Hydrogen tunneling in the activation of dioxygen by a tris(pyrazolyl)borate cobalt complex. Journal of the American Chemical Society, 1994, 116, 6979-6980.                                                                                        | 13.7 | 109       |
| 7  | Calix[6]arene-Based Cuprous "Funnel Complexes― A Mimic for the Substrate Access Channel to Metalloenzyme Active Sites. Journal of the American Chemical Society, 2002, 124, 1334-1340.                                                             | 13.7 | 103       |
| 8  | A Ditopic Calix[6]arene Ligand with <i>N</i> -Methylimidazole and 1,2,3-Triazole Substituents:  Synthesis and Coordination with Zn(II) Cations. Organic Letters, 2007, 9, 4987-4990.                                                               | 4.6  | 100       |
| 9  | Polarizing a Hydrophobic Cavity for the Efficient Binding of Organic Guests:Â The Case of Calix[6]tren, a Highly Efficient and Versatile Receptor for Neutral or Cationic Species. Journal of the American Chemical Society, 2005, 127, 8517-8525. | 13.7 | 98        |
| 10 | Biomimetic Copper(I)-CO Complexes: A Structural and Dynamic Study of a Calix[6]arene-Based Supramolecular System. Chemistry - A European Journal, 2000, 6, 4218-4226.                                                                              | 3.3  | 90        |
| 11 | Calix[6]tren and copper(II): A third generation of funnel complexes on the way to redox calix-zymes.  Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6831-6836.                                       | 7.1  | 87        |
| 12 | Can Spin State Change Slow Organometallic Reactions?. Journal of the American Chemical Society, 1995, 117, 11745-11748.                                                                                                                            | 13.7 | 86        |
| 13 | Efficient Synthesis of Calix[6]tmpa: A New Calix[6]azacryptand with Unique Conformational and Host–Guest Properties. Chemistry - A European Journal, 2006, 12, 6393-6402.                                                                          | 3.3  | 85        |
| 14 | Supramolecular Stabilization of a Tris(imidazolyl) Znâ^'Aqua Complex Evidenced by X-ray Analysis:Â A Structural Model for Mono-Zinc Active Sites of Enzymes. Journal of the American Chemical Society, 2001, 123, 8442-8443.                       | 13.7 | 83        |
| 15 | Architecture-Controlled "SMART―Calix[6]Arene Self-Assemblies in Aqueous Solution. Langmuir, 2007, 23, 4849-4855.                                                                                                                                   | 3.5  | 80        |
| 16 | FirstC3v-Symmetrical Calix[6](aza)crown. Journal of Organic Chemistry, 2003, 68, 3416-3419.                                                                                                                                                        | 3.2  | 75        |
| 17 | Monocopper Center Embedded in a Biomimetic Cavity:Â From Supramolecular Control of Copper Coordination to Redox Regulation. Journal of the American Chemical Society, 2007, 129, 8801-8810.                                                        | 13.7 | 75        |
| 18 | The First Water-Soluble Copper(I) Calix[6] arene Complex Presenting a Hydrophobic Ligand Binding Pocket: A Remarkable Model for Active Sites in Metalloenzymes. Angewandte Chemie - International Edition, 2002, 41, 1044-1046.                    | 13.8 | 71        |

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dioxygen Activation at a Mononuclear Cu(l) Center Embedded in the Calix[6]arene-Tren Core. Journal of the American Chemical Society, 2008, 130, 9514-9523.                                                                                                                      | 13.7 | 71        |
| 20 | Supramolecular Modeling of Mono-copper Enzyme Active Sites with Calix[6]arene-based Funnel Complexes. Accounts of Chemical Research, 2015, 48, 2097-2106.                                                                                                                       | 15.6 | 69        |
| 21 | Novel Biomimetic Calix[6]arene-Based Copper(II) Complexes. Inorganic Chemistry, 2000, 39, 3436-3437.                                                                                                                                                                            | 4.0  | 66        |
| 22 | A NovelC3v-Symmetrical Calix[6](aza)cryptand with a Remarkably High and Selective Affinity for Small Ammoniums. Journal of Organic Chemistry, 2004, 69, 4879-4884.                                                                                                              | 3.2  | 66        |
| 23 | Supramolecular control of transition metal complexes in water by a hydrophobic cavity: a bio-inspired strategy. Organic and Biomolecular Chemistry, 2015, 13, 2849-2865.                                                                                                        | 2.8  | 60        |
| 24 | Novel Binuclear Cobalt Dioxygen Complex—A Step on the Path to Dioxygen Activation. Angewandte Chemie International Edition in English, 1995, 34, 2051-2052.                                                                                                                     | 4.4  | 56        |
| 25 | Oxidative metabolism of linoleic acid by human leukocytes. Biochemical and Biophysical Research Communications, 1989, 161, 883-891.                                                                                                                                             | 2.1  | 55        |
| 26 | Electrochemically Triggered Double Translocation of Two Different Metal Ions with a Ditopic Calix[6] arene Ligand. Journal of the American Chemical Society, 2010, 132, 4393-4398.                                                                                              | 13.7 | 55        |
| 27 | Hydrogen bonding and CH/i∈ interactions for the stabilization of biomimetic zinc complexes: first examples of X-ray characterized alcohol and amide adducts to a tetrahedral dicationic Zn center. Chemical Communications, 2001, , 984-985.                                    | 4.1  | 53        |
| 28 | Drastic effects of the second coordination sphere on neutral vs. anionic guest binding to a biomimetic Cu(ii) center embedded in a calix[6]aza-cryptand. Chemical Communications, 2007, , 810-812.                                                                              | 4.1  | 52        |
| 29 | Mimicking the Protein Access Channel to a Metal Center: Effect of a Funnel Complex on Dissociative versus Associative Copper Redox Chemistry. Journal of the American Chemical Society, 2009, 131, 17800-17807.                                                                 | 13.7 | 52        |
| 30 | A Novel Receptor Based on aC3v-Symmetrical PN3-Calix[6]cryptand. Journal of Organic Chemistry, 2004, 69, 6886-6889.                                                                                                                                                             | 3.2  | 47        |
| 31 | Copper(II) mediated aromatic hydroxylation by trimethylamine N-oxide. Journal of the Chemical Society Chemical Communications, 1990, , 566.                                                                                                                                     | 2.0  | 46        |
| 32 | Iron Coordination Chemistry with New Ligands Containing Triazole and Pyridine Moieties. Comparison of the Coordination Ability of the N-Donors. Inorganic Chemistry, 2013, 52, 691-700.                                                                                         | 4.0  | 46        |
| 33 | Allosterically Coupled Double Induced Fit for 1+1+1+1 Self-Assembly of a Calix[6]trisamine, a Calix[6]trisacid, and Their Guests. Angewandte Chemie - International Edition, 2006, 45, 3123-3126.                                                                               | 13.8 | 43        |
| 34 | Multipoint molecular recognition within a calix[6]arene funnel complex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10449-10454.                                                                                                | 7.1  | 43        |
| 35 | Calix[6]arene-BasedN3-Donors â^ A Versatile Supramolecular System with Tunable Electronic and Steric Properties â^ Study on the Formation of Tetrahedral Dicationic Zinc Complexes in a Biomimetic Environment. European Journal of Inorganic Chemistry, 2001, 2001, 2597-2604. | 2.0  | 42        |
| 36 | Synthesis and Characterization of a Novel Calix[4]arene-Based Two-Coordinate Copper(I) Complex That Is Unusually Resistant to Dioxygen. European Journal of Inorganic Chemistry, 2000, 2000, 1931-1933.                                                                         | 2.0  | 41        |

| #  | Article                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Supramolecular Assembly with Calix[6]arene and Copper Ions â^' Formation of a Novel Tetranuclear Core Exhibiting Unusual Redox Properties and Catecholase Activity. European Journal of Inorganic Chemistry, 2002, 2002, 2007-2014.                                                                     | 2.0  | 41        |
| 38 | Selective recognition of fluoride anion in water by a copper( <scp>ii</scp> ) center embedded in a hydrophobic cavity. Chemical Science, 2014, 5, 3897-3904.                                                                                                                                            | 7.4  | 41        |
| 39 | Theoretical Exploration of the Oxidative Properties of a [(tren <sup>Me1</sup> )CuO <sub>2</sub> ] <sup>+</sup> Adduct Relevant to Copper Monooxygenase Enzymes: Insights into Competitive Dehydrogenation versus Hydroxylation Reaction Pathways. Chemistry - A European Journal, 2008, 14, 6465-6473. | 3.3  | 40        |
| 40 | One-Pot Electrografting of Mixed Monolayers with Controlled Composition. Journal of Physical Chemistry C, 2014, 118, 15919-15928.                                                                                                                                                                       | 3.1  | 40        |
| 41 | Solidâ€State Chemistry at an Isolated Copper(I) Center with O <sub>2</sub> . Angewandte Chemie - International Edition, 2009, 48, 7383-7386.                                                                                                                                                            | 13.8 | 39        |
| 42 | Spontaneous formation of vesicles in a catanionic association involving a head and tail functionalized amino-calix[6] arene. Chemical Communications, 2010, 46, 586-588.                                                                                                                                | 4.1  | 39        |
| 43 | Recognition of primary amines in water by a zinc funnel complex based on calix[6]arene. Chemical Science, 2012, 3, 811-818.                                                                                                                                                                             | 7.4  | 39        |
| 44 | Biomimetic Zinc Funnel Complexes Based on Calix[6]N3ArOLigands:Â An Acidâ^'Base Switch for Guest Binding. Journal of the American Chemical Society, 2005, 127, 14833-14840.                                                                                                                             | 13.7 | 38        |
| 45 | X-ray and Solution Structures of the First Zn Funnel Complex Based on a Calix[6]aza-cryptand. European Journal of Inorganic Chemistry, 2004, 2004, 4371-4374.                                                                                                                                           | 2.0  | 37        |
| 46 | Supramolecular control of an organic radical coupled to a metal ion embedded at the entrance of a hydrophobic cavity. Dalton Transactions, 2003, , 4216-4218.                                                                                                                                           | 3.3  | 36        |
| 47 | Ipso-Chlorosulfonylation of Calixarenes:Â A Powerful Tool for the Selective Functionalization of the Large Rim. Journal of Organic Chemistry, 2006, 71, 4059-4065.                                                                                                                                      | 3.2  | 36        |
| 48 | Electrochemical Behavior of the Tris(pyridine)â^'Cu Funnel Complexes: An Overall Induced-Fit Process Involving an Entatic State through a Supramolecular Stress. Journal of the American Chemical Society, 2005, 127, 5280-5281.                                                                        | 13.7 | 35        |
| 49 | Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN. Journal of Biological Inorganic Chemistry, 2006, 11, 593-608.                                                                                                                                       | 2.6  | 35        |
| 50 | Selective Hetero-Trisfunctionalization of the Large Rim of a Biomimetic Calix[6]arene Using Hostâ-Guest Chemistry as a Synthetic Tool. Journal of the American Chemical Society, 2008, 130, 15226-15227.                                                                                                | 13.7 | 35        |
| 51 | Rational Strategies for the Selective Functionalization of Calixarenes. Asian Journal of Organic Chemistry, 2015, 4, 710-722.                                                                                                                                                                           | 2.7  | 35        |
| 52 | [Hydrotris(3-isopropyl-5-methylpyrazolyl)borato]iodocobalt(II): Unusual Purification by "Inverse Recrystallization". Inorganic Chemistry, 1994, 33, 2306-2308.                                                                                                                                          | 4.0  | 34        |
| 53 | A novel calix[6]arene-based mononuclear copper(I) complex that exhibits chirality at low temperature. New Journal of Chemistry, 1998, 22, 1143-1146.                                                                                                                                                    | 2.8  | 34        |
| 54 | Funnel Complexes with Coll and Nill: New Probes into the Biomimetic Coordination Ability of the Calix[6]arene-Based Tris(imidazole) System. European Journal of Inorganic Chemistry, 2004, 2004, 1817-1826.                                                                                             | 2.0  | 34        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Self-assembly via ionic interactions of calix[6]arene-based receptors displaying remarkable host–guest properties toward neutral guests. Tetrahedron, 2007, 63, 10721-10730.                                                                     | 1.9  | 34        |
| 56 | Immobilization of Monolayers Incorporating Cu Funnel Complexes onto Gold Electrodes. Application to the Selective Electrochemical Recognition of Primary Alkylamines in Water. Journal of the American Chemical Society, 2016, 138, 12841-12853. | 13.7 | 34        |
| 57 | Bio-inspired Calix[6]Arene–Zinc Funnel Complexes. Supramolecular Chemistry, 2003, 15, 573-580.                                                                                                                                                   | 1.2  | 33        |
| 58 | Unprecedented Selectiveipso-Nitration of Calixarenes Monitored by the O-Substituents. Journal of Organic Chemistry, 2003, 68, 7004-7008.                                                                                                         | 3.2  | 32        |
| 59 | A Calix[6]arene Receptor Rigidified by a Self-assembled Triammonium Cap: X-ray and NMR Characterization of the Binding of Polar Neutral Guests. Supramolecular Chemistry, 2005, 17, 243-250.                                                     | 1.2  | 30        |
| 60 | Synthesis and Conformational Study of the First Triply Bridged Calix[6]azatubes. Journal of Organic Chemistry, 2005, 70, 1204-1210.                                                                                                              | 3.2  | 30        |
| 61 | Calixarenes and resorcinarenes as scaffolds for supramolecular metallo-enzyme mimicry.<br>Supramolecular Chemistry, 2014, 26, 454-479.                                                                                                           | 1.2  | 30        |
| 62 | Use of calixarenes bearing diazonium groups for the development of robust monolayers with unique tailored properties. Organic and Biomolecular Chemistry, 2020, 18, 3624-3637.                                                                   | 2.8  | 30        |
| 63 | Supramolecular Assemblies with Calix[6]arenes and Copper Ions:Â from Dinuclear to Trinuclear Linear Arrangements of Hydroxoâ^'Cu(II) Complexes. Inorganic Chemistry, 2006, 45, 1069-1077.                                                        | 4.0  | 29        |
| 64 | Allosteric Tuning of the Intra-Cavity Binding Properties of a Calix[6]arene through External Binding to a ZnII Center Coordinated to Amino Side Chains. Chemistry - A European Journal, 2007, 13, 2078-2088.                                     | 3.3  | 29        |
| 65 | Spectacular induced-fit process for guest binding by a calix[6]arene Zn(ii) funnel complex. Organic and Biomolecular Chemistry, 2008, 6, 3930.                                                                                                   | 2.8  | 29        |
| 66 | First Insights into the Electronic Properties of a Cu(II) Center Embedded in the PN3Cap of a Calix[6]arene-Based Ligand. Inorganic Chemistry, 2007, 46, 375-377.                                                                                 | 4.0  | 28        |
| 67 | Insights into the binding properties of a cuprous ion embedded in the tren cap of a calix[6]arene and supramolecular trapping of an intermediate. Dalton Transactions, 2007, , 771.                                                              | 3.3  | 28        |
| 68 | Replacement of a Nitrogen by a Phosphorus Donor in Biomimetic Copper Complexes: a Surprising and Informative Case Study with Calix[6] arene-Based Cryptands. Inorganic Chemistry, 2009, 48, 4317-4330.                                           | 4.0  | 28        |
| 69 | Supramolecular Assistance for the Selective Demethylation of Calixarene-Based Receptors. Journal of Organic Chemistry, 2015, 80, 5084-5091.                                                                                                      | 3.2  | 28        |
| 70 | Premiere synthese totale d'une hydroxy-methoxy-quinone: la dihydromaesanine. Tetrahedron Letters, 1985, 26, 3993-3996.                                                                                                                           | 1.4  | 27        |
| 71 | X-ray Diffraction and EXAFS Studies of Hydroxoâ^'Cu(II) Complexes Based on a Calix[6]arene-N3Ligand:Â<br>Evidence for a Mononuclearâ^'Dinuclear Equilibrium Controlled by Supramolecular Features.<br>Inorganic Chemistry, 2005, 44, 9743-9751.  | 4.0  | 27        |
| 72 | First Zn <sup>II</sup> Bowl-Complexes Modeling the Tris(histidine) Metallo-Site of Enzymes. Organic Letters, 2010, 12, 2044-2047.                                                                                                                | 4.6  | 23        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tris(triazolyl) Calix[6]arene-Based Zinc and Copper <i>Funnel</i> Complexes: Imidazole-like or Pyridine-like? A Comparative Study. Inorganic Chemistry, 2011, 50, 10985-10993.                      | 4.0 | 23        |
| 74 | Synthesis and First Studies of the Host–Guest and Substrate Recognition Properties of a Porphyrin‶ethered Calix[6]arene Ditopic Ligand. European Journal of Organic Chemistry, 2011, 2011, 166-175. | 2.4 | 23        |
| 75 | Selective functionalization at the small rim of calix[6]arene. Synthesis of novel non-symmetrical N3, N4 and N3ArO biomimetic ligands. Tetrahedron, 2003, 59, 5563-5568.                            | 1.9 | 22        |
| 76 | Encapsulation of a (H3O2)â°'unit in the aromatic core of a calix[6]arene closed by two Zn(ii) ions at the small and large rims. Chemical Communications, 2006, , 3924-3926.                         | 4.1 | 22        |
| 77 | Directional Control and Supramolecular Protection Allowing the Chemo―and Regioselective Transformation of a Triamine. Chemistry - A European Journal, 2009, 15, 11912-11917.                        | 3.3 | 22        |
| 78 | Allosterically driven self-assemblies of interlocked calix[6] arene receptors. Organic and Biomolecular Chemistry, 2011, 9, 2387.                                                                   | 2.8 | 22        |
| 79 | Synthesis of new 4-alkylamino-5-methoxy-2H-pyran-2-ones. Tetrahedron Letters, 1995, 36, 6669-6672.                                                                                                  | 1.4 | 19        |
| 80 | Investigation of the Hydroxylation Mechanism of Noncoupled Copper Oxygenases by Ab Initio Molecular Dynamics Simulations. Chemistry - A European Journal, 2013, 19, 17328-17337.                    | 3.3 | 19        |
| 81 | A Water-Soluble Calix[4] arene-Based Ligand for the Selective Linear Coordination and Stabilization of Copper(I) Ion in Aerobic Conditions. Organic Letters, 2014, 16, 5426-5429.                   | 4.6 | 18        |
| 82 | Synthesis of New Bicyclic Quinones: 2H-1-Benzopyran-5,8-quinones and Related Compounds. Synthesis, 1987, 1987, 790-794.                                                                             | 2.3 | 17        |
| 83 | Self-induced "electroclick―immobilization of a copper complex onto self-assembled monolayers on a gold electrode. Dalton Transactions, 2010, 39, 11516.                                             | 3.3 | 17        |
| 84 | Calorimetric Study on Coordination of Tridentate Imidazolyl Calix[6]arene Ligands to Zinc Ion in Organic Solvents. Inorganic Chemistry, 2011, 50, 6353-6360.                                        | 4.0 | 17        |
| 85 | A Generic Platform for the Addressable Functionalisation of Electrode Surfaces through Selfâ€Induced "Electroclickâ€I Chemistry - A European Journal, 2012, 18, 594-602.                            | 3.3 | 17        |
| 86 | Locally Induced and Self-Induced "Electroclick―onto a Self-Assembled Monolayer: Writing and Reading with SECM under Unbiased Conditions. Langmuir, 2014, 30, 4501-4508.                             | 3.5 | 17        |
| 87 | New and Efficient Conversion of Benzoic Acids into Salicylic Acids via Copper Mediated Hydroxylation Process. Synthesis, 1990, 1990, 612-614.                                                       | 2.3 | 16        |
| 88 | Toward Benign Synthesis via Catalytic Oxidations Using Dioxygen or Nitrous Oxide. ACS Symposium Series, 2002, , 75-85.                                                                              | 0.5 | 16        |
| 89 | Insights into water coordination associated with the Cu <sup>II</sup> /Cu <sup>I</sup> electron transfer at a biomimetic Cu centre. Dalton Transactions, 2014, 43, 6436-6445.                       | 3.3 | 16        |
| 90 | An efficient route to disymmetrically substituted calix[6] arenes. Synthesis of novel ligands presenting a N 2 S or N 3 CO 2 â^ binding core. Tetrahedron Letters, 2004, 45, 4669-4672.             | 1.4 | 15        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Primary amine recognition in water by a calix[6]aza-cryptand incorporated in dodecylphosphocholine micelles. Organic and Biomolecular Chemistry, 2015, 13, 2931-2938.                                                     | 2.8 | 15        |
| 92  | "Two-Story―Calix[6]arene-Based Zinc and Copper Complexes: Structure, Properties, and O <sub>2</sub> Binding. Inorganic Chemistry, 2017, 56, 10971-10983.                                                                  | 4.0 | 15        |
| 93  | Supramolecular Assistance for the Selective Monofunctionalization of a Calix[6]arene Tris-carboxylic Acid-Based Receptor. Journal of Organic Chemistry, 2014, 79, 1913-1919.                                              | 3.2 | 14        |
| 94  | Selective EPR Detection of Primary Amines in Water with a Calix[6]azacryptand-Based Copper(II) Funnel Complex. Inorganic Chemistry, 2018, 57, 3646-3655.                                                                  | 4.0 | 14        |
| 95  | Synthesis of New 3-(-2-Alkenyl)-2-hydroxy-5-methoxy-p-benzoquinones via Claisen Rearrangement of Original 5-Methoxy-4-(2-propenyloxy)-o-benzoquinones. Synthesis, 1988, 1988, 293-300.                                    | 2.3 | 13        |
| 96  | 2-(N-amido)-4-nitrophenol: A new ligand for the copper-mediated hydroxylation of aromatics by trimethylamine N-oxide. Journal of Molecular Catalysis, 1991, 68, L13-L15.                                                  | 1.2 | 13        |
| 97  | <i>Ipso</i> -Nitration of Calix[6]azacryptands: Intriguing Effect of the Small Rim Capping Pattern on the Large Rim Substitution Selectivity. Journal of Organic Chemistry, 2012, 77, 3838-3845.                          | 3.2 | 13        |
| 98  | Synthesis and Studies of a Water-Soluble and Air-Stable Cu <sup>I</sup> /Cu <sup>II</sup> Open-Shell <i>Funnel</i>                                                                                                        | 4.6 | 13        |
| 99  | Coordination of Lead(II) in the Supramolecular Environment Provided by a "Two-Story―<br>Calix[6]arene-based N <sub>6</sub> Ligand. Inorganic Chemistry, 2013, 52, 14089-14095.                                            | 4.0 | 13        |
| 100 | Supramolecular Control of Hetero-multinuclear Polytopic Binding of Metal Ions (ZnII, CuI) at a Single Calix[6]arene-Based Scaffold. Inorganic Chemistry, 2012, 51, 5965-5974.                                             | 4.0 | 12        |
| 101 | Guest Covalent Capture by a Host: A Biomimetic Strategy for the Selective Functionalization of a Cavity. Chemistry - A European Journal, 2013, 19, 642-653.                                                               | 3.3 | 12        |
| 102 | Supramolecular Control of a Mononuclear Biomimetic Copper(II) Center: Bowl Complexes vs Funnel Complexes. Inorganic Chemistry, 2014, 53, 6224-6234.                                                                       | 4.0 | 12        |
| 103 | Transmembrane transport of copper( <scp>i</scp> ) by imidazole-functionalised calix[4]arenes. Chemical Communications, 2020, 56, 8206-8209.                                                                               | 4.1 | 12        |
| 104 | Calix[6]arene-based models for mono-copper enzymes: a promising supramolecular system for oxidation catalysis. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 811-819.                       | 0.1 | 11        |
| 105 | Bowl versus Funnel Supramolecular Concept for Cu <sup>I</sup> Complexes within the Biomimetic Tris(imidazole) Core. European Journal of Inorganic Chemistry, 2013, 2013, 5171-5180.                                       | 2.0 | 11        |
| 106 | Supramolecular Control of Biomimetic Coordination – Zn <sup>II</sup> Cavity Complexes Presenting Two Differentiated Labile Sites in <i>cis</i> Positions. European Journal of Inorganic Chemistry, 2014, 2014, 2819-2828. | 2.0 | 11        |
| 107 | A Promising Approach for Controlling the Second Coordination Sphere of Biomimetic Metal Complexes: Encapsulation in a Dynamic Hydrogenâ€Bonded Capsule. Chemistry - A European Journal, 2021, 27, 434-443.                | 3.3 | 11        |
| 108 | Synthesis of 5-Alkoxy-4-alkylamino-1,2-benzoquinones. Synthesis, 1995, 1995, 1534-1538.                                                                                                                                   | 2.3 | 10        |

| #   | Article                                                                                                                                                                                                                                                                                          | IF  | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Electrochemically Driven Cupâ€andâ€Ball Cu <sup>I</sup> and Cu <sup>II</sup> Complexes. Chemistry - A European Journal, 2013, 19, 10611-10618.                                                                                                                                                   | 3.3 | 10        |
| 110 | Guest-Triggered ZnllTranslocation and Supramolecular Nuclearity Control in Calix[6]arene-Based Complexes. Inorganic Chemistry, 2013, 52, 4683-4691.                                                                                                                                              | 4.0 | 10        |
| 111 | Submerging a Biomimetic Metalloâ€Receptor in Water for Molecular Recognition: Micellar Incorporation or Water Solubilization? A Case Study. Chemistry - A European Journal, 2018, 24, 17964-17974.                                                                                               | 3.3 | 10        |
| 112 | The 3 <sup>rd</sup> degree of biomimetism: associating the cavity effect, Zn <sup>II</sup> coordination and internal base assistance for guest binding and activation. Chemical Science, 2018, 9, 5479-5487.                                                                                     | 7.4 | 10        |
| 113 | ortho-Aryloxylation of N-substituted benzamides: a new oxidizing process induced by the copper(II)/trimethylamine N-oxide system. Journal of the Chemical Society Perkin Transactions $1,1991,,2129$ .                                                                                           | 0.9 | 9         |
| 114 | Thermal and acid-catalysed sigmatropic rearrangements of allylamino-methoxy-1,2-benzoquinones. Tetrahedron, 1996, 52, 13605-13614.                                                                                                                                                               | 1.9 | 9         |
| 115 | Selective Fluorimetric Detection of Primary Alkylamines by a Calix[6]arene Funnel Complex. Chemistry - A European Journal, 2017, 23, 8669-8677.                                                                                                                                                  | 3.3 | 9         |
| 116 | An induced-fit process through mechanical pivoting of aromatic walls in host–guest chemistry of calix[6]arene aza-cryptands. Organic and Biomolecular Chemistry, 2014, 12, 2754-2760.                                                                                                            | 2.8 | 8         |
| 117 | Gating the electron transfer at a monocopper centre through the supramolecular coordination of water molecules within a protein chamber mimic. Chemical Science, 2018, 9, 8282-8290.                                                                                                             | 7.4 | 8         |
| 118 | Synthesis of "Two-Story―Calix[6]aza-Cryptands. Organic Letters, 2011, 13, 5660-5663.                                                                                                                                                                                                             | 4.6 | 7         |
| 119 | The first water-soluble bowl complex: molecular recognition of acetate by the biomimetic tris(imidazole) Zn( <scp>ii</scp> ) system at pH 7.4. Organic and Biomolecular Chemistry, 2015, 13, 3194-3197.                                                                                          | 2.8 | 7         |
| 120 | Kinetic and Thermodynamic Stabilization of Metal Complexes by Introverted Coordination in a Calix[6]azacryptand. Chemistry - A European Journal, 2016, 22, 4855-4862.                                                                                                                            | 3.3 | 7         |
| 121 | A biomimetic strategy for the selective recognition of organophosphates in 100% water: synergies of electrostatic interactions, cavity embedment and metal coordination. Organic Chemistry Frontiers, 2019, 6, 1627-1636.                                                                        | 4.5 | 7         |
| 122 | One Step Synthesis of Calix[ <i>n</i> )quinÂones through the HClO <sub>4</sub> /PbO <sub>2</sub> â€Mediated Oxidation of Calix[ <i>n</i> )arenes. European Journal of Organic Chemistry, 2016, 2016, 1665-1668.                                                                                  | 2.4 | 6         |
| 123 | Impact of positive charge and ring-size on the interactions of calixarenes with DNA, RNA and nucleotides. New Journal of Chemistry, 2022, 46, 6860-6869.                                                                                                                                         | 2.8 | 6         |
| 124 | Synthesis of tetrahydroazocino- and dihydroazepino-1, 2-benzoquinones via amino-claisen rearrangement of 4- (2-vinyl - azetidino and aziridino)-1, 2-benzoquinones. Tetrahedron Letters, 1995, 36, 4787-4790.                                                                                    | 1.4 | 5         |
| 125 | Innovative Methodologies for the N-Protection of <i>N</i> -Alkylimidazole Groups:  Application to the First Synthesis of a Water-Soluble Calix[6]arene Presenting Three Ammonium Substituents at the Large Rim and Three Neutral N-Donors at the Small Rim. Organic Letters, 2007, 9, 3271-3274. | 4.6 | 5         |
| 126 | A versatile strategy for appending a single functional group to a multifunctional host through host–guest covalent-capture. Organic and Biomolecular Chemistry, 2014, 12, 7780-7785.                                                                                                             | 2.8 | 5         |

| #   | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Calix[6]azacryptand-Based Receptors., 2016, , 113-140.                                                                                                                                                                                                                      |     | 5         |
| 128 | Synthesis and Binding Properties of a Trenâ€Capped Hexahomotrioxacalix[3]arene. ChemPhysChem, 2020, 21, 83-89.                                                                                                                                                              | 2.1 | 5         |
| 129 | Triflate-functionalized calix[6]arenes as versatile building-blocks: application to the synthesis of an inherently chiral Zn( <scp>ii</scp> ) complex. Organic and Biomolecular Chemistry, 2016, 14, 1950-1957.                                                             | 2.8 | 4         |
| 130 | Mimicking the Regulation Step of Feâ€Monooxygenases: Allosteric Modulation of Fe <sup>IV</sup> â€Oxo Formation by Guest Binding in a Dinuclear Zn <sup>II</sup> –Fe <sup>II</sup> Calix[6]areneâ€Based Funnel Complex. Chemistry - A European Journal, 2017, 23, 2894-2906. | 3.3 | 4         |
| 131 | Reactions of 4-dialkylamino-5-methoxy-1,2-benzoquinones in acidic media: Selective C-alkylation or N-dealkylation. Tetrahedron, 1996, 52, 7841-7854.                                                                                                                        | 1.9 | 3         |
| 132 | Proton-induced motion in a molecular cup-and-ball zinc funnel complex. Tetrahedron Letters, 2013, 54, 3398-3401.                                                                                                                                                            | 1.4 | 3         |
| 133 | Closing a Calix[6]arene-Based Funnel Zn <sup>2+</sup> Complex at Its Large Rim Entrance:<br>Consequences on Metal Ion Affinity and Host–Guest Properties. Journal of Organic Chemistry, 2021,<br>86, 12075-12083.                                                           | 3.2 | 3         |
| 134 | A Water Molecule Triggers Guest Exchange at a Monoâ€Zinc Centre Confined in a Biomimetic Calixarene Pocket: a Model for Understanding Ligand Stability in Zn Proteins. Chemistry - A European Journal, 2021, 27, 13730-13738.                                               | 3.3 | 2         |
| 135 | Turning on anion and betaine hosting by a small structural change of a biomimetic cavity: a case study. Supramolecular Chemistry, 2021, 33, 370-379.                                                                                                                        | 1.2 | 2         |
| 136 | Models of Metallo-enzyme Active Sites. , 2007, , 259-285.                                                                                                                                                                                                                   |     | 1         |
| 137 | Chemoselective guest-triggered shaping of a polynuclear Cullcalix[6]complex into a molecular host. Dalton Transactions, 2017, 46, 15249-15256.                                                                                                                              | 3.3 | 1         |
| 138 | A Water Molecule Triggers Guest Exchange at a Monoâ€Zinc Centre Confined in a Biomimetic Calixarene Pocket: a Model for Understanding Ligand Stability in Zn Proteins. Chemistry - A European Journal, 2021, 27, 13663.                                                     | 3.3 | 1         |
| 139 | Synthesis and Characterization of a Novel Calix[4]arene-Based Two-Coordinate Copper(I) Complex That Is Unusually Resistant to Dioxygen. European Journal of Inorganic Chemistry, 2000, 2000, 1931-1933.                                                                     | 2.0 | 1         |
| 140 | Biomimetic Copper(I)–CO Complexes: A Structural and Dynamic Study of a Calix[6]arene-Based Supramolecular System. Chemistry - A European Journal, 2000, 6, 4218-4226.                                                                                                       | 3.3 | 1         |
| 141 | Modification of Surfaces with Calix[4] arene Diazonium Salts. Physical Chemistry in Action, 2022, , 247-262.                                                                                                                                                                | 0.6 | 1         |
| 142 | First C3ÏSymmetrical Calix[6](aza)crown ChemInform, 2003, 34, no.                                                                                                                                                                                                           | 0.0 | 0         |
| 143 | Electrochemical Behavior of Calix[6]Arene-Based Supramolecular Models of Copper Enzymes. ECS Transactions, 2007, 6, 15-19.                                                                                                                                                  | 0.5 | 0         |