Peter E Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639937/publications.pdf

Version: 2024-02-01

			218677	1	82427
	55	4,257 citations	26		51
	papers	citations	h-index		g-index
Ξ					
	Г.С	T.C.			2000
	56	56	56		3890
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. International Journal of Biochemistry and Cell Biology, 2021, 130, 105886.	2.8	7
2	Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development. International Journal of Molecular Sciences, 2021, 22, 5119.	4.1	8
3	ELK-1 ubiquitination status and transcriptional activity are modulated independently of F-Box protein FBXO25. Journal of Biological Chemistry, 2021, 296, 100214.	3.4	2
4	Stat3 oxidation-dependent regulation of gene expression impacts on developmental processes and involves cooperation with Hif- $\hat{1}$ 1±. PLoS ONE, 2020, 15, e0244255.	2.5	11
5	De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation. Nucleic Acids Research, 2019, 47, 4495-4508.	14.5	23
6	Strategy for Tumor-Selective Disruption of Androgen Receptor Function in the Spectrum of Prostate Cancer. Clinical Cancer Research, 2018, 24, 6509-6522.	7.0	15
7	A <scp>HIF</scp> – <scp>LIMD</scp> 1 negative feedback mechanism mitigates the proâ€tumorigenic effects of hypoxia. EMBO Molecular Medicine, 2018, 10, .	6.9	17
8	Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Science Signaling, 2017, 10, .	3.6	87
9	The Amino-terminal Domain of the Androgen Receptor Co-opts Extracellular Signal-regulated Kinase (ERK) Docking Sites in ELK1 Protein to Induce Sustained Gene Activation That Supports Prostate Cancer Cell Growth. Journal of Biological Chemistry, 2016, 291, 25983-25998.	3.4	16
10	Stepwise evolution of Elkâ€1 in early deuterostomes. FEBS Journal, 2016, 283, 1025-1038.	4.7	5
11	ERK phosphorylation of MED14 in promoter complexes during mitogen-induced gene activation by Elk-1. Nucleic Acids Research, 2013, 41, 10241-10253.	14.5	10
12	PU.1 is a major transcriptional activator of the tumour suppressor gene <i>LIMD1</i> . FEBS Letters, 2011, 585, 1089-1096.	2.8	12
13	Molecular dynamics simulations and in silico peptide ligand screening of the Elk-1 ETS domain. Journal of Cheminformatics, 2011, 3, 49.	6.1	7
14	Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1. Nucleic Acids Research, 2011, 39, 6390-6402.	14.5	21
15	Could STAT3 provide a link between respiration and cell cycle progression?. Cell Cycle, 2010, 9, 4294-4296.	2.6	26
16	Modulation of Gene Expression and Tumor Cell Growth by Redox Modification of STAT3. Cancer Research, 2010, 70, 8222-8232.	0.9	113
17	Integration of Protein Kinases into Transcription Complexes: Identifying Components of Immobilised In Vitro Pre-initiation Complexes. Methods in Molecular Biology, 2010, 647, 291-303.	0.9	O
18	Post-translational Control of ETS Transcription Factors: Detection of Modified Factors at Target Gene Promoters. Methods in Molecular Biology, 2010, 647, 279-289.	0.9	0

#	Article	IF	Citations
19	Localization of elF4A-III in the nucleolus and splicing speckles is an indicator of plant stress. Plant Signaling and Behavior, 2009, 4, 1148-1151.	2.4	15
20	Identification of Protein/DNA Contacts with Dimethyl Sulfate: Methylation Protection and Methylation Interference. Methods in Molecular Biology, 2009, 543, 97-104.	0.9	22
21	Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Research, 2008, 36, 2594-2607.	14.5	91
22	Anomalous behaviour of the STAT3 binding site in the human c-myc P2 promoter. Biochemical and Biophysical Research Communications, 2007, 364, 627-632.	2.1	5
23	The Structural Determinants of Macrolide-Actin Binding: In Silico Insights. Biophysical Journal, 2007, 92, 3862-3867.	0.5	6
24	Peptidylâ€prolyl cis / trans isomerases and transcription: is there a twist in the tail?. EMBO Reports, 2007, 8, 40-45.	4.5	62
25	Elevated Activity of STAT3C due to Higher DNA Binding Affinity of Phosphotyrosine Dimer Rather than Covalent Dimer Formation. Journal of Biological Chemistry, 2006, 281, 33172-33181.	3.4	32
26	Bacterial N-acylhomoserine lactone-induced apoptosis in breast carcinoma cells correlated with down-modulation of STAT3. Oncogene, 2004, 23, 4894-4902.	5.9	123
27	A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress. Biochemical and Biophysical Research Communications, 2004, 322, 1005-1011.	2.1	73
28	Ternary complex factors: prime nuclear targets for mitogen-activated protein kinases. International Journal of Biochemistry and Cell Biology, 2003, 35, 1210-1226.	2.8	116
29	ERK1 Associates with $\hat{l}\pm v\hat{l}^2$ 3 Integrin and Regulates Cell Spreading on Vitronectin. Journal of Biological Chemistry, 2003, 278, 1975-1985.	3.4	48
30	A Raf-1 Mutant That Dissociates MEK/Extracellular Signal-Regulated Kinase Activation from Malignant Transformation and Differentiation but Not Proliferation. Molecular and Cellular Biology, 2003, 23, 1983-1993.	2.3	51
31	Autocrine-mediated Activation of STAT3 Correlates with Cell Proliferation in Breast Carcinoma Lines. Journal of Biological Chemistry, 2002, 277, 17397-17405.	3.4	96
32	Cyclic AMP-Dependent Kinase Regulates Raf-1 Kinase Mainly by Phosphorylation of Serine 259. Molecular and Cellular Biology, 2002, 22, 3237-3246.	2.3	202
33	PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene, 2002, 21, 2236-2244.	5.9	111
34	Peptidylâ€prolyl isomerases: a new twist to transcription. EMBO Reports, 2002, 3, 521-526.	4.5	146
35	Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signalling. EMBO Journal, 2002, 21, 5611-5622.	7.8	73
36	Identification of Protein-DNA Contacts with Dimethyl Sulfate: Methylation Protection and Methylation Interference., 2001, 148, 221-227.		8

#	Article	IF	CITATIONS
37	The small-GTPase RalA activates transcription of the urokinase plasminogen activator receptor (uPAR) gene via an AP1-dependent mechanism. Oncogene, 2001, 20, 1816-1824.	5.9	24
38	Serum Response Factor Cleavage by Caspases 3 and 7 Linked to Apoptosis in Human BJAB Cells. Journal of Biological Chemistry, 2001, 276, 33444-33451.	3.4	24
39	Cosegregation of T108A Elk-1 with mental retardation. American Journal of Medical Genetics Part A, 2000, 95, 404-405.	2.4	5
40	Identification of Protein-DNA Contacts with Dimethyl Sulfate: Methylation Protection and Methylation Interference., 2000,, 737-743.		0
41	Dimer Formation by Ternary Complex Factor ELK-1. Journal of Biological Chemistry, 2000, 275, 1757-1762.	3.4	21
42	Nociception activates Elk-1 and Sap 1a following expression of the ORL 1 receptor in Chinese hamster ovary cells. NeuroReport, 1998, 9, 2703-2708.	1.2	16
43	Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochemical Journal, 1998, 335, 19-26.	3.7	41
44	A role for the small GTPase Rac in polyomavirus middle-T antigen-mediated activation of the serum response element and in cell transformation. Oncogene, 1997, 14, 1235-1241.	5.9	36
45	Dual Leucine Zipper-bearing Kinase (DLK) Activates p46SAPK and p38 but Not ERK2. Journal of Biological Chemistry, 1996, 271, 24788-24793.	3.4	124
46	Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Current Biology, 1995, 5, 1191-1200.	3.9	186
47	Identification of Protein–DNA Contacts with Dimethyl Sulfate: Methylation Protection and Methylation Interference. , 1994, 30, 79-88.		15
48	The identification of elements determining the different DNA binding specificities of the MADS box proteins p67SRFand RSRFC4. Nucleic Acids Research, 1993, 21, 215-221.	14.5	62
49	Improved primer design for PCR-based, site-directed mutagenesis. Nucleic Acids Research, 1992, 20, 1147-1147.	14.5	32
50	Confocal microscopy and image processing in the study of plant nuclear structure. Journal of Microscopy, 1992, 166, 87-97.	1.8	18
51	Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature, 1992, 358, 414-417.	27.8	977
52	UV shadowing provides a simple means to quantify nucleic acid transferred to hybridization membranes. Nucleic Acids Research, 1989, 17, 8892-8892.	14.5	6
53	Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature, 1989, 340, 68-70.	27.8	381
54	The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell, 1989, 56, 563-572.	28.9	521

#	Article	IF	CITATIONS
55	Purification of intercalator-released p67, a polypeptide that interacts specifically with the c-fos serum response element. Nucleic Acids Research, 1987, 15, 10145-10158.	14.5	107