Mohanish Deshmukh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639507/publications.pdf

Version: 2024-02-01

43 papers 7,788 citations

172457 29 h-index 254184 43 g-index

44 all docs

44 docs citations

44 times ranked 11746 citing authors

#	Article	IF	Citations
1	Constitutive High Expression of NOXA Sensitizes Human Embryonic Stem Cells for Rapid Cell Death. Stem Cells, 2022, 40, 49-58.	3.2	3
2	p53 is required for nuclear but not mitochondrial DNA damage-induced degeneration. Cell Death and Disease, 2021, 12, 104.	6.3	8
3	MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell Reports, 2021, 35, 108946.	6.4	25
4	Characterization of a Cul9–Parkin double knockout mouse model for Parkinson's disease. Scientific Reports, 2020, 10, 16886.	3.3	5
5	Apoptotic cell death regulation in neurons. FEBS Journal, 2019, 286, 3276-3298.	4.7	117
6	Apoptosis versus axon pruning: Molecular intersection of two distinct pathways for axon degeneration. Neuroscience Research, 2019, 139, 3-8.	1.9	28
7	Large SOD1 aggregates, unlike trimeric SOD1, do not impact cell viability in a model of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4661-4665.	7.1	77
8	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
9	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120
10	Physiological functions of non-apoptotic caspase activity in the nervous system. Seminars in Cell and Developmental Biology, 2018, 82, 127-136.	5.0	49
11	Bcl-xL Is Essential for the Survival and Function of Differentiated Neurons in the Cortex That Control Complex Behaviors. Journal of Neuroscience, 2016, 36, 5448-5461.	3.6	48
12	The paradox of dicer in cancer. Molecular and Cellular Oncology, 2016, 3, e1155006.	0.7	14
13	Mature neurons dynamically restrict apoptosis <i>via</i> redundant premitochondrial brakes. FEBS Journal, 2016, 283, 4569-4582.	4.7	19
14	Axon degeneration: context defines distinct pathways. Current Opinion in Neurobiology, 2016, 39, 108-115.	4.2	74
15	Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum. Cell Reports, 2016, 14, 216-224.	6.4	41
16	Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 614-619.	7.1	97
17	Neuronal Stress Pathway Mediating a Histone Methyl/Phospho Switch Is Required for Herpes Simplex Virus Reactivation. Cell Host and Microbe, 2015, 18, 649-658.	11.0	121
18	Life after MOMP. Molecular Cell, 2015, 58, 199-201.	9.7	7

#	Article	IF	CITATIONS
19	Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma. Cancer Letters, 2015, 356, 268-272.	7.2	24
20	The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Science Signaling, 2014, 7, ra67.	3.6	61
21	Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nature Communications, 2013, 4, 1876.	12.8	140
22	Tonic Activation of Bax Primes Neural Progenitors for Rapid Apoptosis through a Mechanism Preserved in Medulloblastoma. Journal of Neuroscience, 2013, 33, 18098-18108.	3.6	23
23	Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Human Molecular Genetics, 2012, 21, 1954-1967.	2.9	67
24	Human embryonic stem cells. Cell Cycle, 2012, 11, 3905-3906.	2.6	5
25	Human Embryonic Stem Cells Have Constitutively Active Bax at the Golgi and Are Primed to Undergo Rapid Apoptosis. Molecular Cell, 2012, 46, 573-583.	9.7	139
26	Activation of Apoptosis by Cytoplasmic Microinjection of Cytochrome c . Journal of Visualized Experiments, 2011, , .	0.3	12
27	miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes and Development, 2011, 25, 125-130.	5.9	196
28	Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway. PLoS ONE, 2009, 4, e5097.	2.5	36
29	Lack of X-Linked Inhibitor of Apoptosis Protein Leads to Increased Apoptosis and Tissue Loss Following Neonatal Brain Injury. ASN Neuro, 2009, 1, AN20090005.	2.7	20
30	Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nature Cell Biology, 2008, 10, 1477-1483.	10.3	348
31	Chromatin modification of Apaf-1 restricts the apoptotic pathway in mature neurons. Journal of Cell Biology, 2007, 179, 825-832.	5.2	44
32	Restricting Apoptosis for Postmitotic Cell Survival and its Relevance to Cancer. Cell Cycle, 2006, 5, 1616-1620.	2.6	35
33	Reduced Apaf-1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. Journal of Cell Biology, 2005, 171, 925-930.	5.2	105
34	Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. Journal of Cell Biology, 2004, 167, 303-313.	5.2	77
35	Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. Journal of Cell Biology, 2003, 163, 789-799.	5.2	130
36	Exogenous Smac Induces Competence and Permits Caspase Activation in Sympathetic Neurons. Journal of Neuroscience, 2002, 22, 8018-8027.	3.6	41

3

#	Article	IF	CITATION
37	Caspase Inhibition Extends the Commitment to Neuronal Death Beyond Cytochrome c Release to the Point of Mitochondrial Depolarization. Journal of Cell Biology, 2000, 150, 131-144.	5.2	175
38	Inhibition of Apoptotic Signaling Cascades Causes Loss of Trophic Factor Dependence during Neuronal Maturation. Journal of Cell Biology, 2000, 149, 1011-1018.	5.2	65
39	Reversible Physiological Alterations in Sympathetic Neurons Deprived of NGF but Protected from Apoptosis by Caspase Inhibition or Bax Deletion. Experimental Neurology, 2000, 161, 203-211.	4.1	24
40	BAX Translocation Is a Critical Event in Neuronal Apoptosis: Regulation by Neuroprotectants, BCL-2, and Caspases. Journal of Neuroscience, 1999, 19, 7476-7485.	3.6	292
41	Evidence of a Novel Event during Neuronal Death. Neuron, 1998, 21, 695-705.	8.1	271
42	Programmed Cell Death in Neurons: Focus on the Pathway of Nerve Growth Factor Deprivation-Induced Death of Sympathetic Neurons. Molecular Pharmacology, 1997, 51, 897-906.	2.3	203
43	Bax Deletion Further Orders the Cell Death Pathway in Cerebellar Granule Cells and Suggests a Caspase-independent Pathway to Cell Death. Journal of Cell Biology, 1997, 139, 205-217.	5.2	365