Siegfried E Vlaeminck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Full-scale partial nitritation/anammox experiences – An application survey. Water Research, 2014, 55, 292-303.	11.3	1,401
2	Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox. Applied and Environmental Microbiology, 2010, 76, 900-909.	3.1	318
3	Successful application of nitritation/anammox toÂwastewater with elevated organic carbon to ammonia ratios. Water Research, 2014, 49, 316-326.	11.3	250
4	ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. International Journal of Sustainable Development and World Ecology, 2011, 18, 253-264.	5.9	195
5	One-stage partial nitritation/anammox at 15°C on pretreated sewage: feasibility demonstration at lab-scale. Applied Microbiology and Biotechnology, 2013, 97, 10199-10210.	3.6	168
6	Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research, 2011, 45, 2811-2821.	11.3	166
7	Nitrogen Removal from Digested Black Water by One-Stage Partial Nitritation and Anammox. Environmental Science & Technology, 2009, 43, 5035-5041.	10.0	160
8	Microbial resource management of oneâ€stage partial nitritation/anammox. Microbial Biotechnology, 2012, 5, 433-448.	4.2	145
9	Strategies to mitigate N2O emissions from biological nitrogen removal systems. Current Opinion in Biotechnology, 2012, 23, 474-482.	6.6	133
10	Toward energy-neutral wastewater treatment: A high-rate contact stabilization process to maximally recover sewage organics. Bioresource Technology, 2015, 179, 373-381.	9.6	130
11	Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion. Water Research, 2015, 74, 166-179.	11.3	128
12	Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights. Current Opinion in Biotechnology, 2018, 50, 214-221.	6.6	123
13	Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnology Advances, 2020, 43, 107567.	11.7	103
14	OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Applied Microbiology and Biotechnology, 2011, 90, 1537-1545.	3.6	98
15	Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Research, 2009, 43, 2493-2503.	11.3	97
16	Capture–Ferment–Upgrade: A Three-Step Approach for the Valorization of Sewage Organics as Commodities. Environmental Science & Technology, 2018, 52, 6729-6742.	10.0	97
17	High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology, 2019, 275, 247-257.	9.6	95
18	Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria: Paving the way for protein production on fermented wastewater. Water Research, 2019, 152, 138-147.	11.3	88

#	Article	IF	CITATIONS
19	Uncoupling the solids retention times of flocs and granules in mainstream deammonification: A screen as effective out-selection tool for nitrite oxidizing bacteria. Bioresource Technology, 2016, 221, 195-204.	9.6	87
20	Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresource Technology, 2016, 218, 1237-1245.	9.6	86
21	Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 2011, 90, 1511-1519.	3.6	80
22	Used water and nutrients: Recovery perspectives in a †̃panta rhei' context. Bioresource Technology, 2016, 215, 199-208.	9.6	79
23	Optimized Cryopreservation of Mixed Microbial Communities for Conserved Functionality and Diversity. PLoS ONE, 2014, 9, e99517.	2.5	74
24	Partial Nitrification Achieved by Pulse Sulfide Doses in a Sequential Batch Reactor. Environmental Science & Technology, 2008, 42, 8715-8720.	10.0	73
25	The contribution of microbial biotechnology to sustainable development goals. Microbial Biotechnology, 2017, 10, 984-987.	4.2	73
26	Purple nonâ€sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microbial Biotechnology, 2020, 13, 1336-1365.	4.2	70
27	Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND biomass after long-term storage. Applied Microbiology and Biotechnology, 2007, 74, 1376-1384.	3.6	68
28	Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater. Environmental Science & Technology, 2016, 50, 9781-9790.	10.0	67
29	Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox. Water Research, 2018, 143, 270-281.	11.3	67
30	Environmental impact of microbial protein from potato wastewater as feed ingredient: Comparative consequential life cycle assessment of three production systems and soybean meal. Water Research, 2020, 171, 115406.	11.3	67
31	Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Progress in Aerospace Sciences, 2017, 91, 87-98.	12.1	65
32	Enrichment and adaptation yield high anammox conversion rates under low temperatures. Bioresource Technology, 2018, 250, 505-512.	9.6	63
33	Fast start-up of a pilot-scale deammonification sequencing batch reactor from an activated sludge inoculum. Water Science and Technology, 2010, 61, 1393-1400.	2.5	62
34	High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Research, 2016, 100, 137-145.	11.3	62
35	Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification. Water Science and Technology, 2016, 74, 375-384.	2.5	61
36	Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere, 2009, 76, 1221-1225.	8.2	60

#	Article	IF	CITATIONS
37	A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Science of the Total Environment, 2021, 756, 143726.	8.0	60
38	Follow the N and P road: High-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management. Resources, Conservation and Recycling, 2016, 115, 9-21.	10.8	59
39	Dunaliella Microalgae for Nutritional Protein: An Undervalued Asset. Trends in Biotechnology, 2020, 38, 10-12.	9.3	54
40	Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. Water Research, 2020, 185, 116223.	11.3	54
41	Synergistic Exposure of Return-Sludge to Anaerobic Starvation, Sulfide, and Free Ammonia to Suppress Nitrite Oxidizing Bacteria. Environmental Science & Technology, 2018, 52, 8725-8732.	10.0	53
42	Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresource Technology, 2016, 211, 41-50.	9.6	52
43	High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure. Water Research, 2018, 144, 522-531.	11.3	52
44	Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. Bioresource Technology, 2019, 272, 582-593.	9.6	52
45	Purple bacteria as added-value protein ingredient in shrimp feed: Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress. Aquaculture, 2021, 530, 735788.	3.5	52
46	Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification. Water Research, 2018, 144, 76-86.	11.3	51
47	Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresource Technology, 2019, 287, 121398.	9.6	51
48	Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. Bioresource Technology, 2019, 275, 145-152.	9.6	47
49	Granular biomass capable of partial nitritation and anammox. Water Science and Technology, 2008, 58, 1113-1120.	2.5	44
50	Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor. Biodegradation, 2012, 23, 739-749.	3.0	44
51	Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. Microbial Biotechnology, 2016, 9, 389-399.	4.2	42
52	Revisiting Methanotrophic Communities in Sewage Treatment Plants. Applied and Environmental Microbiology, 2013, 79, 2841-2846.	3.1	40
53	Improving the resource footprint evaluation of products recovered from wastewater: A discussion on appropriate allocation in the context of circular economy. Resources, Conservation and Recycling, 2019, 148, 132-144.	10.8	40
54	In quest of the nitrogen oxidizing prokaryotes of the early Earth. Environmental Microbiology, 2011, 13, 283-295.	3.8	39

#	Article	IF	CITATIONS
55	Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization. Applied Microbiology and Biotechnology, 2016, 100, 5595-5606.	3.6	37
56	Deammonification process start-up after enrichment of anammox microorganisms from reject water in a moving-bed biofilm reactor. Environmental Technology (United Kingdom), 2013, 34, 3095-3101.	2.2	36
57	A robust nitrifying community in a bioreactor at 50 ŰC opens up the path for thermophilic nitrogen removal. ISME Journal, 2016, 10, 2293-2303.	9.8	36
58	Sewage pre-concentration for maximum recovery and reuse at decentralized level. Water Science and Technology, 2013, 67, 1188-1193.	2.5	35
59	Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation. Bioresource Technology, 2014, 155, 182-188.	9.6	35
60	High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery. Bioresource Technology, 2019, 291, 121833.	9.6	35
61	Harvesting time and biomass composition affect the economics of microalgae production. Journal of Cleaner Production, 2020, 259, 120782.	9.3	35
62	Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants. Water Research, 2018, 138, 37-46.	11.3	34
63	Bottle or tap? Toward an integrated approach to water type consumption. Water Research, 2020, 173, 115578.	11.3	32
64	Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters. PLoS ONE, 2014, 9, e113515.	2.5	32
65	A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor. Bioresource Technology, 2009, 100, 5010-5015.	9.6	31
66	Mainstream partial nitritation/anammox with integrated fixed-film activated sludge: Combined aeration and floc retention time control strategies limit nitrate production. Bioresource Technology, 2020, 314, 123711.	9.6	31
67	Nitrogen removal in a moving bed membrane bioreactor for municipal sewage treatment: Community differentiation in attached biofilm and suspended biomass. Chemical Engineering Journal, 2015, 277, 209-218.	12.7	30
68	Production of carboxylates from high rate activated sludge through fermentation. Bioresource Technology, 2016, 217, 165-172.	9.6	30
69	Overcoming floc formation limitations in high-rate activated sludge systems. Chemosphere, 2019, 215, 342-352.	8.2	30
70	Enrichment and Aggregation of Purple Non-sulfur Bacteria in a Mixed-Culture Sequencing-Batch Photobioreactor for Biological Nutrient Removal From Wastewater. Frontiers in Bioengineering and Biotechnology, 2020, 8, 557234.	4.1	30
71	Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media. Scientific Reports, 2019, 9, 9561.	3.3	29
72	Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microbial Biotechnology, 2020, 13, 1377-1389.	4.2	28

#	Article	IF	CITATIONS
73	Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors. Bioresource Technology, 2021, 319, 124192.	9.6	28
74	Operational Strategies to Selectively Produce Purple Bacteria for Microbial Protein in Raceway Reactors. Environmental Science & amp; Technology, 2021, 55, 8278-8286.	10.0	28
75	Effects of salinity, pH and growth phase on the protein productivity by <scp> <i>Dunaliella salina</i> </scp> . Journal of Chemical Technology and Biotechnology, 2019, 94, 1032-1040.	3.2	27
76	Kinetic exploration of nitrate-accumulating microalgae for nutrient recovery. Applied Microbiology and Biotechnology, 2014, 98, 8377-8387.	3.6	25
77	Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite. Journal of Biotechnology, 2015, 193, 120-122.	3.8	24
78	Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost. Bioresource Technology, 2018, 257, 266-273.	9.6	24
79	Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate. Water Research, 2017, 127, 1-10.	11.3	23
80	Environmental and economic sustainability of the nitrogen recovery paradigm: Evidence from a structured literature review. Resources, Conservation and Recycling, 2022, 184, 106406.	10.8	23
81	Trade-off between mesophilic and thermophilic denitrification: Rates vs. sludge production, settleability and stability. Water Research, 2014, 63, 234-244.	11.3	22
82	The ManureEcoMine pilot installation: advanced integration of technologies for the management of organics and nutrients in livestock waste. Water Science and Technology, 2017, 75, 1281-1293.	2.5	21
83	Adaptation and characterization of thermophilic anammox in bioreactors. Water Research, 2020, 172, 115462.	11.3	21
84	Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality. Bioresource Technology, 2020, 307, 123242.	9.6	21
85	Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND. Environmental Science & Technology, 2012, 46, 8826-8833.	10.0	20
86	Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox. Bioresource Technology, 2021, 342, 125996.	9.6	20
87	Energy efficient treatment of A-stage effluent: pilot-scale experiences with shortcut nitrogen removal. Water Science and Technology, 2016, 73, 2150-2158.	2.5	19
88	Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal. Bioresource Technology, 2018, 269, 104-112.	9.6	19
89	Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale. Microbial Biotechnology, 2012, 5, 403-414.	4.2	18
90	Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers. Water Research, 2016, 92, 94-103.	11.3	17

#	Article	IF	CITATIONS
91	Return-Sludge Treatment with Endogenous Free Nitrous Acid Limits Nitrate Production and N ₂ O Emission for Mainstream Partial Nitritation/Anammox. Environmental Science & Technology, 2020, 54, 5822-5831.	10.0	17
92	From Biogas and Hydrogen to Microbial Protein Through Co-Cultivation of Methane and Hydrogen Oxidizing Bacteria. Frontiers in Bioengineering and Biotechnology, 2021, 9, 733753.	4.1	17
93	Nitrogen cycle microorganisms can be reactivated after Space exposure. Scientific Reports, 2018, 8, 13783.	3.3	16
94	Proof of concept of high-rate decentralized pre-composting of kitchen waste: Optimizing design and operation of a novel drum reactor. Waste Management, 2019, 91, 20-32.	7.4	16
95	Metabolic and Proteomic Responses to Salinity in Synthetic Nitrifying Communities of Nitrosomonas spp. and Nitrobacter spp Frontiers in Microbiology, 2018, 9, 2914.	3.5	14
96	Enhanced fungal delignification and enzymatic digestibility of poplar wood by combined CuSO4 and MnSO4 supplementation. Process Biochemistry, 2021, 108, 129-137.	3.7	14
97	Screen <i>versus</i> cyclone for improved capacity and robustness for sidestream and mainstream deammonification. Environmental Science: Water Research and Technology, 2019, 5, 1769-1781.	2.4	13
98	Storage without nitrite or nitrate enables the long-term preservation of full-scale partial nitritation/anammox sludge. Science of the Total Environment, 2022, 806, 151330.	8.0	13
99	Urine nitrification with a synthetic microbial community. Systematic and Applied Microbiology, 2019, 42, 126021.	2.8	12
100	A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions. Desalination, 2020, 495, 114634.	8.2	12
101	Increased salinity improves the thermotolerance of mesophilic nitrification. Applied Microbiology and Biotechnology, 2014, 98, 4691-9.	3.6	11
102	Towards harmonization of water quality management: A comparison of chemical drinking water and surface water quality standards around the globe. Journal of Environmental Management, 2021, 298, 113447.	7.8	11
103	Granular biomass capable of partial nitritation and anammox. Water Science and Technology, 2009, 59, 609.	2.5	11
104	Towards mainstream partial nitritation/anammox in four seasons: Feasibility of bioaugmentation with stored summer sludge for winter anammox assistance. Bioresource Technology, 2022, 347, 126619.	9.6	11
105	Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop. Astrobiology, 2019, 19, 1167-1176.	3.0	9
106	Media Optimization, Strain Compatibility, and Low-Shear Modeled Microgravity Exposure of Synthetic Microbial Communities for Urine Nitrification in Regenerative Life-Support Systems. Astrobiology, 2019, 19, 1353-1362.	3.0	9
107	Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels. Microbial Biotechnology, 2022, 15, 6-12.	4.2	9
108	Electrochemical In Situ pH Control Enables Chemical-Free Full Urine Nitrification with Concomitant Nitrate Extraction. Environmental Science & Technology, 2021, 55, 8287-8298.	10.0	9

#	Article	IF	CITATIONS
109	Ureolytic Activity and Its Regulation in <i>>Vibrio campbellii</i> and <i>>Vibrio harveyi</i> in Relation to Nitrogen Recovery from Human Urine. Environmental Science & Technology, 2017, 51, 13335-13343.	10.0	8
110	Determining stoichiometry and kinetics of two thermophilic nitrifying communities as a crucial step in the development of thermophilic nitrogen removal. Water Research, 2019, 156, 34-45.	11.3	8
111	Time to act–assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems. Water Research, 2021, 190, 116604.	11.3	8
112	Microbial food from light, carbon dioxide and hydrogen gas: Kinetic, stoichiometric and nutritional potential of three purple bacteria. Bioresource Technology, 2021, 337, 125364.	9.6	8
113	Aerobes and phototrophs as microbial organic fertilizers: Exploring mineralization, fertilization and plant protection features. PLoS ONE, 2022, 17, e0262497.	2.5	8
114	Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer. Applied Microbiology and Biotechnology, 2007, 75, 1455-1461.	3.6	7
115	Photosynthetic oxygenation for urine nitrification. Water Science and Technology, 2018, 78, 183-194.	2.5	7
116	Dehazing redox homeostasis to foster purple bacteria biotechnology. Trends in Biotechnology, 2023, 41, 106-119.	9.3	7
117	Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10. Science of the Total Environment, 2022, 822, 153489.	8.0	6
118	Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation: Impact of organic loading rate, hydraulic retention time and water composition. Bioresource Technology, 2022, 348, 126806.	9.6	6
119	Evaluation of Lignocellulosic Wastewater Valorization with the Oleaginous Yeasts R. kratochvilovae EXF7516 and C. oleaginosum ATCC 20509. Fermentation, 2022, 8, 204.	3.0	6
120	13C Incorporation as a Tool to Estimate Biomass Yields in Thermophilic and Mesophilic Nitrifying Communities. Frontiers in Microbiology, 2019, 10, 192.	3.5	5
121	The Impact of Local Hydrodynamics on High-Rate Activated Sludge Flocculation in Laboratory and Full-Scale Reactors. Processes, 2020, 8, 131.	2.8	5
122	Stable performance of nonâ€aerated twoâ€stage partial nitritation/anammox (PANAM) with minimal process control. Microbial Biotechnology, 2012, 5, 425-432.	4.2	3
123	Effective carbon and nutrient treatment solutions for mixed domestic-industrial wastewater in India. Water Science and Technology, 2015, 72, 651-657.	2.5	3
124	Pioneering on single-sludge nitrification/denitrification at 50°C. Chemosphere, 2020, 252, 126527.	8.2	3
125	A bioreactor and nutrient balancing approach for the conversion of solid organic fertilizers to liquid nitrate-rich fertilizers: Mineralization and nitrification performance complemented with economic aspects. Science of the Total Environment, 2022, 806, 150415.	8.0	3
126	Efficiency and Sustainability of Urban Wastewater Treatment with Maximum Separation of the Solid		2

and Liquid Fraction. , 2011, , 507-515.

#	Article	IF	CITATIONS
127	Editorial preface. Microbial Biotechnology, 2012, 5, 305-306.	4.2	2
128	When the smoke disappears: dealing with extinguishing chemicals in firefighting wastewater. Water Science and Technology, 2014, 69, 1720-1727.	2.5	2
129	Microbial Biotechnologyâ€2020. Microbial Biotechnology, 2016, 9, 529-529.	4.2	2
130	NOB out-selection in mainstream deammonification – A resilience evaluation. Proceedings of the Water Environment Federation, 2015, 2015, 2237-2242.	0.0	2
131	NOB out-selection in rotating biological contactors for sidestream and mainstream deammonification. Proceedings of the Water Environment Federation, 2013, 2013, 1948-1958.	0.0	1
132	Mechanistic Understanding of Microbial Activity Inhibition: Case Study on Sidestream Deammonification for Digester Supernatant Pretreated by Thermal Hydrolysis. Proceedings of the Water Environment Federation, 2016, 2016, 6073-6088.	0.0	1
133	Efficient THP-AD Filtrate Treatment via Optimized Control Strategies in Sidestream Deammonification Reactor. Proceedings of the Water Environment Federation, 2015, 2015, 6538-6549.	0.0	1
134	Balancing Denitrification and Anammox Activities in Mainstream Deammonification: Influence of COD Input and Aeration Regime. Proceedings of the Water Environment Federation, 2014, 2014, 7433-7437.	0.0	0
135	Short and Long Term Effect of Decreasing Temperature on Anammox Activity and Enrichment in Mainstream Granular Sludge Process. Lecture Notes in Civil Engineering, 2017, , 50-54.	0.4	0
136	Kinetic exploration of intracellular nitrate storage in marine microalgae. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 1303-1311.	1.7	0
137	A Novel Method for Quantifying the Solubilization Potential of Thermal Hydrolysis Processes. Proceedings of the Water Environment Federation, 2015, 2015, 6559-6568.	0.0	0
138	Biofilms for One-stage Autotrophic Nitrogen Removal. , 2016, , 205-222.		0
139	It's time to harvest: Combining internal selection and flocculent external selection to maximize carbon capture efficiency. Proceedings of the Water Environment Federation, 2017, 2017, 4294-4296.	0.0	0
140	Enhancing the decoupling of solids retention times in full-scale deammonification processes using screens. Proceedings of the Water Environment Federation, 2018, 2018, 185-191.	0.0	0
141	Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment. Environmental Science: Water Research and Technology, 2021, 7, 2268-2281.	2.4	Ο