Claus Kristensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3638119/publications.pdf

Version: 2024-02-01

471509 580821 1,821 25 17 25 citations h-index g-index papers 25 25 25 1914 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nature Communications, 2019, 10, 1785.	12.8	49
2	Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology, 2018, 28, 542-549.	2.5	30
3	Structures of insect Imp-L2 suggest an alternative strategy for regulating the bioavailability of insulin-like hormones. Nature Communications, 2018, 9, 3860.	12.8	22
4	Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data. BMC Systems Biology, 2017, $11, 37$.	3.0	14
5	Deep sequencing reveals different compositions of mRNA transcribed from the <i>F8</i> gene in a panel of FVIIIâ€producing CHO cell lines. Biotechnology Journal, 2015, 10, 1081-1089.	3.5	4
6	Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nature Biotechnology, 2015, 33, 842-844.	17.5	213
7	Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics, $2015, 16, 160.$	2.8	75
8	Toward genome-scale models of the Chinese hamster ovary cells: incentives, status and perspectives. Pharmaceutical Bioprocessing, 2014, 2, 437-448.	0.8	13
9	Hyperglycosylation prolongs the circulation of coagulation factor IX. Journal of Thrombosis and Haemostasis, 2012, 10, 2397-2398.	3.8	14
10	Platform process for production of monoclonal antibodies for research purposes – improvement option. BMC Proceedings, 2011, 5, P44.	1.6	1
11	N-Glycosylation Increases the Circulatory Half-Life of Human Growth Hormone. Endocrinology, 2010, 151, 5326-5336.	2.8	58
12	Structural Basis of the Aberrant Receptor Binding Properties of Hagfish and Lamprey Insulins. Biochemistry, 2009, 48, 11283-11295.	2.5	14
13	More than one intracellular processing bottleneck delays the secretion of coagulation factor VII. Thrombosis and Haemostasis, 2008, 100, 204-210.	3.4	7
14	More than one intracellular processing bottleneck delays the secretion of coagulation factor VII. Thrombosis and Haemostasis, 2008, 100, 204-10.	3.4	5
15	All post-translational modifications except propeptide cleavage are required for optimal secretion of coagulation factor VII. Thrombosis and Haemostasis, 2007, 98, 988-997.	3.4	35
16	Posttranslational N-glycosylation takes place during the normal processing of human coagulation factor VII. Glycobiology, 2005, 15, 541-547.	2.5	54
17	Functional Reconstitution of Insulin Receptor Binding Site from Non-binding Receptor Fragments. Journal of Biological Chemistry, 2002, 277, 18340-18345.	3.4	37
18	Role of Insulin Receptor Dimerization Domains in Ligand Binding, Cooperativity, and Modulation by Anti-receptor Antibodies. Journal of Biological Chemistry, 2002, 277, 16718-16725.	3.4	37

#	Article	IF	CITATION
19	Dimeric Fragment of the Insulin Receptor α-Subunit Binds Insulin with Full Holoreceptor Affinity. Journal of Biological Chemistry, 2001, 276, 12378-12384.	3.4	35
20	A New Secreted Insect Protein Belonging to the Immunoglobulin Superfamily Binds Insulin and Related Peptides and Inhibits Their Activities. Journal of Biological Chemistry, 2000, 275, 16948-16953.	3.4	60
21	Ligand-induced conformational change in the minimized insulin receptor. Journal of Molecular Biology, 2000, 303, 161-169.	4.2	18
22	Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use Diabetes, 2000, 49, 999-1005.	0.6	717
23	Specificity of Insulin and Insulin-like Growth Factor I Receptors Investigated using Chimeric Mini-Receptors. Journal of Biological Chemistry, 1999, 274, 37351-37356.	3.4	62
24	Expression and Characterization of a 70-kDa Fragment of the Insulin Receptor That Binds Insulin. Journal of Biological Chemistry, 1998, 273, 17780-17786.	3.4	55
25	Alanine Scanning Mutagenesis of Insulin. Journal of Biological Chemistry, 1997, 272, 12978-12983.	3.4	192