Andrew J K Conlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3637599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	164
2	Milk and meat consumption patterns and the potential risk of zoonotic disease transmission among urban and peri-urban dairy farmers in Ethiopia. BMC Public Health, 2022, 22, 222.	2.9	23
3	Productivity loss and cost of bovine tuberculosis for the dairy livestock sector in Ethiopia. Preventive Veterinary Medicine, 2022, 202, 105616.	1.9	4
4	Transmission history of SARS-CoV-2 in humans and white-tailed deer. Scientific Reports, 2022, 12, .	3.3	13
5	A case of early neonate bovine tuberculosis in Ethiopia. Clinical Case Reports (discontinued), 2021, 9, 487-490.	0.5	2
6	Understanding the Role of Duration of Vaccine Protection with MenAfriVac: Simulating Alternative Vaccination Strategies. Microorganisms, 2021, 9, 461.	3.6	3
7	A Meta-Analysis of the Effect of Bacillus Calmette-Guérin Vaccination Against Bovine Tuberculosis: Is Perfect the Enemy of Good?. Frontiers in Veterinary Science, 2021, 8, 637580.	2.2	19
8	Population structure and transmission of Mycobacterium bovis in Ethiopia. Microbial Genomics, 2021, 7, .	2.0	9
9	Effect of Bovine Tuberculosis on Selected Productivity Parameters and Trading in Dairy Cattle Kept Under Intensive Husbandry in Central Ethiopia. Frontiers in Veterinary Science, 2021, 8, 698768.	2.2	4
10	The variable prevalence of bovine tuberculosis among dairy herds in Central Ethiopia provides opportunities for targeted intervention. PLoS ONE, 2021, 16, e0254091.	2.5	9
11	Evaluation of the Efficacy of BCG in Protecting Against Contact Challenge With Bovine Tuberculosis in Holstein-Friesian and Zebu Crossbred Calves in Ethiopia. Frontiers in Veterinary Science, 2021, 8, 702402.	2.2	11
12	Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial. PLoS Pathogens, 2021, 17, e1010075.	4.7	20
13	A Defined Antigen Skin Test That Enables Implementation of BCG Vaccination for Control of Bovine Tuberculosis: Proof of Concept. Frontiers in Veterinary Science, 2020, 7, 391.	2.2	14
14	Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infectious Diseases, The, 2020, 20, 1151-1160.	9.1	710
15	Efficient Bayesian Model Choice for Partially Observed Processes: With Application to an Experimental Transmission Study of an Infectious Disease. Bayesian Analysis, 2020, 15, .	3.0	2
16	Network analysis of dairy cattle movement and associations with bovine tuberculosis spread and control in emerging dairy belts of Ethiopia. BMC Veterinary Research, 2019, 15, 262.	1.9	23
17	Prevalence of bovine tuberculosis and its associated risk factors in the emerging dairy belts of regional cities in Ethiopia. Preventive Veterinary Medicine, 2019, 168, 81-89.	1.9	42
18	Norovirus transmission dynamics: a modelling review. Epidemiology and Infection, 2018, 146, 147-158.	2.1	41

ANDREW J K CONLAN

#	Article	IF	CITATIONS
19	Risk factors and variations in detection of new bovine tuberculosis breakdowns via slaughterhouse surveillance in Great Britain. PLoS ONE, 2018, 13, e0198760.	2.5	10
20	Structure and consistency of self-reported social contact networks in British secondary schools. PLoS ONE, 2018, 13, e0200090.	2.5	10
21	Modelling norovirus transmission and vaccination. Vaccine, 2018, 36, 5565-5571.	3.8	9
22	Prevalence of Bovine Tuberculosis in India: A systematic review and meta-analysis. Transboundary and Emerging Diseases, 2018, 65, 1627-1640.	3.0	66
23	The intractable challenge of evaluating cattle vaccination as a control for bovine Tuberculosis. ELife, 2018, 7, .	6.0	8
24	Testing the dairy difference. Veterinary Journal, 2016, 217, 134-135.	1.7	2
25	Modeling Long-term Vaccination Strategies With MenAfriVac in the African Meningitis Belt. Clinical Infectious Diseases, 2015, 61, S594-S600.	5.8	47
26	Potential Benefits of Cattle Vaccination as a Supplementary Control for Bovine Tuberculosis. PLoS Computational Biology, 2015, 11, e1004038.	3.2	28
27	School's Out: Seasonal Variation in the Movement Patterns of School Children. PLoS ONE, 2015, 10, e0128070.	2.5	18
28	The demography of freeâ€roaming dog populations and applications to disease and population control. Journal of Applied Ecology, 2014, 51, 1096-1106.	4.0	101
29	Age-dependent patterns of bovine tuberculosis in cattle. Veterinary Research, 2013, 44, 97.	3.0	57
30	Evidenceâ€based control of canine rabies: a critical review of population density reduction. Journal of Animal Ecology, 2013, 82, 6-14.	2.8	163
31	Genetic Predisposition to Pass the Standard SICCT Test for Bovine Tuberculosis in British Cattle. PLoS ONE, 2013, 8, e58245.	2.5	20
32	Estimating the Hidden Burden of Bovine Tuberculosis in Great Britain. PLoS Computational Biology, 2012, 8, e1002730.	3.2	117
33	Estimation of the Relative Sensitivity of the Comparative Tuberculin Skin Test in Tuberculous Cattle Herds Subjected to Depopulation. PLoS ONE, 2012, 7, e43217.	2.5	39
34	The Effect of Badger Culling on Breakdown Prolongation and Recurrence of Bovine Tuberculosis in Cattle Herds in Great Britain. PLoS ONE, 2012, 7, e51342.	2.5	4
35	Recurrence of bovine tuberculosis breakdowns in Great Britain: Risk factors and prediction. Preventive Veterinary Medicine, 2011, 102, 22-29.	1.9	94
36	Transmission and dose–response experiments for social animals: a reappraisal of the colonization biology of <i>Campylobacter jejuni</i> in chickens. Journal of the Royal Society Interface, 2011, 8, 1720-1735.	3.4	24

ANDREW J K CONLAN

#	Article	IF	CITATIONS
37	Measuring social networks in British primary schools through scientific engagement. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1467-1475.	2.6	54
38	Diagnostic assays for glanders. Veterinary Record, 2011, 169, 663-663.	0.3	0
39	Predicting prolonged bovine tuberculosis breakdowns in Great Britain as an aid to control. Preventive Veterinary Medicine, 2010, 97, 183-190.	1.9	47
40	Resolving the impact of waiting time distributions on the persistence of measles. Journal of the Royal Society Interface, 2010, 7, 623-640.	3.4	48
41	The dynamics of measles in sub-Saharan Africa. Nature, 2008, 451, 679-684.	27.8	305
42	Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. Journal of the Royal Society Interface, 2008, 5, 67-74.	3.4	80
43	Competing Isogenic <i>Campylobacter</i> Strains Exhibit Variable Population Structures In Vivo. Applied and Environmental Microbiology, 2008, 74, 3857-3867.	3.1	46
44	Comparison of Challenge Models for Determining the Colonization Dose of Campylobacter jejuni in Broiler Chicks. Poultry Science, 2008, 87, 1700-1706.	3.4	12
45	Seasonality and the persistence and invasion of measles. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1133-1141.	2.6	69
46	Campylobacter jejuni colonization and transmission in broiler chickens: a modelling perspective. Journal of the Royal Society Interface, 2007, 4, 819-829.	3.4	42