Ajai Vyas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3637128/publications.pdf

Version: 2024-02-01

233421 279798 4,710 47 23 45 h-index citations g-index papers 48 48 48 4483 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Frontiers in Nutrition, 2022, 9, 827286.	3.7	2
2	Social plasticity and decision making. Brain Research, 2022, 1785, 147890.	2.2	0
3	Gut microbiota composition does not associate with <i>toxoplasma</i> infection in rats. Molecular Ecology, 2022, 31, 3963-3970.	3.9	5
4	Behavioral biology of Toxoplasma gondii infection. Parasites and Vectors, 2021, 14, 77.	2.5	27
5	Behavioral Manipulation by Toxoplasma gondii: Does Brain Residence Matter?. Trends in Parasitology, 2021, 37, 381-390.	3.3	9
6	Arginine vasopressin in the medial amygdala causes greater post-stress recruitment of hypothalamic vasopressin neurons. Molecular Brain, 2021, 14, 141.	2.6	6
7	Medial Amygdala Arginine Vasopressin Neurons Regulate Innate Aversion to Cat Odors in Male Mice. Neuroendocrinology, 2021, 111, 505-520.	2.5	20
8	Toxoplasma gondii Infection Causes an Atypical Abundance of Oxytocin and Its Receptor in the Female Rat Brain. Pathogens, 2021, 10, 1495.	2.8	1
9	Testosterone Acts Within the Medial Amygdala of Rats to Reduce Innate Fear to Predator Odor Akin to the Effects of Toxoplasma gondii Infection. Frontiers in Psychiatry, 2020, 11, 630.	2.6	7
10	Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator odor. Brain, Behavior, & Immunity - Health, 2020, 8, 100128.	2.5	6
11	Why behavioral neuroscience still needs diversity?: A curious case of a persistent need. Neuroscience and Biobehavioral Reviews, 2020, 116, 130-141.	6.1	16
12	Testosterone Reduces Fear and Causes Drastic Hypomethylation of Arginine Vasopressin Promoter in Medial Extended Amygdala of Male Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 33.	2.0	26
13	Loss of predator aversion in female rats after Toxoplasma gondii infection is not dependent on ovarian steroids. Brain, Behavior, and Immunity, 2017, 65, 95-98.	4.1	19
14	Sexual Transmission of Cyst-Forming Coccidian Parasites with Complex Life Cycles. Current Sexual Health Reports, 2017, 9, 271-276.	0.8	3
15	Effects of stress or infection on rat behavior show robust reversals due to environmental disturbance. F1000Research, 2017, 6, 2097.	1.6	5
16	Effects of stress or infection on rat behavior show robust reversals due to environmental disturbance. F1000Research, 2017, 6, 2097.	1.6	4
17	Infection of male rats with Toxoplasma gondii induces effort-aversion in a T-maze decision-making task. Brain, Behavior, and Immunity, 2016, 53, 273-277.	4.1	5
18	Toxoplasma gondii infection and testosterone congruently increase tolerance of male rats for risk of reward forfeiture. Hormones and Behavior, 2016, 79, 37-44.	2.1	23

#	Article	IF	Citations
19	Extended epigenotype in a < i>Rattus novergicus < i>â€" < i>Toxoplasma gondii < i>association. Communicative and Integrative Biology, 2015, 8, e992743.	1.4	8
20	Infection of male rats with <i>Toxoplasma gondii</i> results in enhanced delay aversion and neural changes in the nucleus accumbens core. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150042.	2.6	22
21	α2u-globulins mediate manipulation of host attractiveness in <i>Toxoplasma gondii</i> – <i>Rattus novergicus</i> association. ISME Journal, 2015, 9, 2112-2115.	9.8	11
22	Mechanisms of Host Behavioral Change in Toxoplasma gondii Rodent Association. PLoS Pathogens, 2015, 11, e1004935.	4.7	60
23	Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats. ELife, 2015, 4, .	6.0	59
24	Sexual Attractiveness in Male Rats Is Associated with Greater Concentration of Major Urinary Proteins 1. Biology of Reproduction, 2014, 91, 150.	2.7	31
25	Active coping toward predatory stress is associated with lower corticosterone and progesterone plasma levels and decreased methylation in the medial amygdala vasopressin system. Hormones and Behavior, 2014, 66, 561-566.	2.1	34
26	Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Molecular Ecology, 2014, 23, 6114-6122.	3.9	123
27	Copulation or sensory cues from the female augment Fos expression in arginine vasopressin neurons of the posterodorsal medial amygdala of male rats. Frontiers in Zoology, 2014, 11, 42.	2.0	35
28	Toxoplasma gondii infection enhances the kairomonal valence of rat urine. F1000Research, 2014, 3, 92.	1.6	1
29	<i>Toxoplasma gondii</i> infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion. DMM Disease Models and Mechanisms, 2013, 6, 516-20.	2.4	57
30	Infection with Toxoplasma gondii does not elicit predator aversion in male mice nor increase their attractiveness in terms of mate choice. Parasitology Research, 2013, 112, 3373-3378.	1.6	11
31	Case-based approach to evolution through study of animal behavior. , 2013, , .		O
32	<i>Toxoplasma gondii</i> infection enhances testicular steroidogenesis in rats. Molecular Ecology, 2013, 22, 102-110.	3.9	93
33	Parasite-augmented mate choice and reduction in innate fear in rats infected by <i>Toxoplasma gondii < /i> Iournal of Experimental Biology, 2013, 216, 120-126.</i>	1.7	61
34	Kairomonal communication in mice is concentration-dependent with a proportional discrimination threshold. F1000Research, 2013, 2, 195.	1.6	6
35	Kairomonal communication in mice is concentration-dependent with a proportional discrimination threshold. F1000Research, 2013, 2, 195.	1.6	3
36	Predator Cat Odors Activate Sexual Arousal Pathways in Brains of Toxoplasma gondii Infected Rats. PLoS ONE, 2011, 6, e23277.	2.5	103

#	Article	IF	CITATION
37	Protozoan Parasite Toxoplasma gondii Manipulates Mate Choice in Rats by Enhancing Attractiveness of Males. PLoS ONE, 2011, 6, e27229.	2.5	76
38	Manipulation of host behaviour by Toxoplasma gondii: what is the minimum a proposed proximate mechanism should explain?. Folia Parasitologica, 2010, 57, 88-94.	1.3	51
39	Behavioral changes induced by <i>Toxoplasma</i> infection of rodents are highly specific to aversion of cat odors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6442-6447.	7.1	491
40	The effects of toxoplasma infection on rodent behavior are dependent on dose of the stimulus. Neuroscience, 2007, 148, 342-348.	2.3	76
41	Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience, 2006, 143, 387-393.	2.3	256
42	Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9371-9376.	7.1	548
43	Chronic-stress induced modulation of different states of anxiety-like behavior in female rats. Neuroscience Letters, 2005, 383, 278-283.	2.1	54
44	Modulation of Different States of Anxiety-Like Behavior by Chronic Stress Behavioral Neuroscience, 2004, 118, 1450-1454.	1.2	119
45	Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience, 2004, 128, 667-673.	2.3	391
46	Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Research, 2003, 965, 290-294.	2.2	264
47	Chronic Stress Induces Contrasting Patterns of Dendritic Remodeling in Hippocampal and Amygdaloid Neurons, Journal of Neuroscience, 2002, 22, 6810-6818.	3.6	1,480