Sophie Laurent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3635553/publications.pdf Version: 2024-02-01

		34105	10734
225	20,125	52	138
papers	citations	h-index	g-index
232	232	232	25452
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008, 108, 2064-2110.	47.7	5,815
2	Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011, 63, 24-46.	13.7	1,555
3	Proteinâ	47.7	1,242
4	Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011, 166, 8-23.	14.7	1,125
5	Hybrid Gadolinium Oxide Nanoparticles:Â Multimodal Contrast Agents for in Vivo Imaging. Journal of the American Chemical Society, 2007, 129, 5076-5084.	13.7	721
6	Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media and Molecular Imaging, 2009, 4, 1-23.	0.8	472
7	Magnetic Resonance Imaging Tracking of Stem Cells in Vivo Using Iron Oxide Nanoparticles as a Tool for the Advancement of Clinical Regenerative Medicine. Chemical Reviews, 2011, 111, 253-280.	47.7	385
8	Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media and Molecular Imaging, 2006, 1, 128-137.	0.8	368
9	Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opinion on Drug Delivery, 2019, 16, 69-78.	5.0	364
10	Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opinion on Drug Delivery, 2014, 11, 1449-1470.	5.0	357
11	Toxicity Evaluations of Superparamagnetic Iron Oxide Nanoparticles: Cell "Vision― <i>versus</i> Physicochemical Properties of Nanoparticles. ACS Nano, 2011, 5, 7263-7276.	14.6	317
12	Engineered nanoparticles for biomolecular imaging. Nanoscale, 2011, 3, 3007.	5.6	246
13	A Highâ€Performance Magnetic Resonance Imaging <i>T</i> ₂ Contrast Agent. Advanced Materials, 2007, 19, 1874-1878.	21.0	226
14	Stability of MRI Paramagnetic Contrast Media. Investigative Radiology, 2001, 36, 115-122.	6.2	196
15	Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chemical Reviews, 2013, 113, 1877-1903.	47.7	187
16	Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 2017, 6, 1700306.	7.6	176
17	Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicology and Applied Pharmacology, 2011, 253, 81-93.	2.8	172
18	Magnetic iron oxide nanoparticles for biomedical applications. Future Medicinal Chemistry, 2010, 2, 427-449.	2.3	158

#	Article	IF	CITATIONS
19	Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications. Angewandte Chemie - International Edition, 2011, 50, 12299-12303.	13.8	156
20	Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and "Cell Vision― PLoS ONE, 2012, 7, e29997.	2.5	154
21	A multinuclear MR study of Gd-EOB-DTPA: Comprehensive preclinical characterization of an organ specific MRI contrast agent. Magnetic Resonance in Medicine, 1997, 38, 604-614.	3.0	136
22	Hydrogels Incorporating GdDOTA: Towards Highly Efficient Dual <i>T</i> ₁ <i>/T</i> ₂ MRI Contrast Agents. Angewandte Chemie - International Edition, 2012, 51, 9119-9122.	13.8	134
23	Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale, 2011, 3, 1127-38.	5.6	112
24	Superparamagnetic iron oxide nanoparticles for <i>in vivo</i> molecular and cellular imaging. Contrast Media and Molecular Imaging, 2015, 10, 329-355.	0.8	109
25	Physicochemical Characterization of MS-325, a New Gadolinium Complex, by Multinuclear Relaxometry. European Journal of Inorganic Chemistry, 1999, 1999, 1949-1955.	2.0	107
26	Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia. Chemistry of Materials, 2014, 26, 5252-5264.	6.7	105
27	High quality and tuneable silica shell–magnetic core nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1137-1147.	1.9	104
28	Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale, 2013, 5, 8656.	5.6	98
29	Contrast Agents: Magnetic Resonance. Handbook of Experimental Pharmacology, 2008, , 135-165.	1.8	96
30	Iron Oxide Based MR Contrast Agents: from Chemistry to Cell Labeling. Current Medicinal Chemistry, 2009, 16, 4712-4727.	2.4	88
31	Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129435.	2.4	86
32	How to measure the transmetallation of a gadolinium complex. Contrast Media and Molecular Imaging, 2010, 5, 305-308.	0.8	83
33	Peptidic Targeting of Phosphatidylserine for the MRI Detection of Apoptosis in Atherosclerotic Plaques. Molecular Pharmaceutics, 2009, 6, 1903-1919.	4.6	78
34	Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine, 2011, 6, 519-528.	3.3	76
35	How to quantify iron in an aqueous or biological matrix: a technical note. Contrast Media and Molecular Imaging, 2009, 4, 299-304.	0.8	73
36	Significance of cell "observer―and protein source in nanobiosciences. Journal of Colloid and Interface Science, 2013, 392, 431-445.	9.4	73

#	Article	IF	CITATIONS
37	Development of a Magnetic Resonance Imaging Protocol for the Characterization of Atherosclerotic Plaque by Using Vascular Cell Adhesion Molecule-1 and Apoptosis-Targeted Ultrasmall Superparamagnetic Iron Oxide Derivatives. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32. e36-48.	2.4	72
38	Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine, 2015, 10, 2931-2952.	3.3	70
39	Potential MRI Contrast Agents Based on Micellar Incorporation of Amphiphilic Bis(alkylamide) Derivatives of [(Gdâ^'DTPA)(H2O)]2â^'. European Journal of Inorganic Chemistry, 2003, 2003, 3021-3027.	2.0	67
40	Relaxometric Studies of γ-Fe ₂ O ₃ @SiO ₂ Core Shell Nanoparticles: When the Coating Matters. Journal of Physical Chemistry C, 2012, 116, 2285-2291.	3.1	65
41	Iron oxide–gold core–shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1213-1219.	2.5	65
42	Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 367-90.	0.4	65
43	Polyglycerolâ€grafted superparamagnetic iron oxide nanoparticles: highly efficient MRI contrast agent for liver and kidney imaging and potential scaffold for cellular and molecular imaging. Contrast Media and Molecular Imaging, 2012, 7, 185-194.	0.8	64
44	Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111599.	3.8	63
45	Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages. PLoS ONE, 2015, 10, e0129008.	2.5	61
46	Gadolinium DTPA-Monoamide Complexes Incorporated into Mixed Micelles as Possible MRI Contrast Agents. European Journal of Inorganic Chemistry, 2004, 2004, 3538-3543.	2.0	59
47	Synthesis and Characterization of Various Benzyl Diethylenetriaminepentaacetic Acids (dtpa) and Their Paramagnetic Complexes, Potential Contrast Agents for Magnetic Resonance Imaging. Helvetica Chimica Acta, 2000, 83, 394-406.	1.6	57
48	Optimization of the Synthesis of Superparamagnetic Contrast Agents by the Design of Experiments Method. Journal of Physical Chemistry C, 2008, 112, 19178-19185.	3.1	55
49	Synthesis and processing of magnetic nanoparticles. Current Opinion in Chemical Engineering, 2015, 8, 7-14.	7.8	55
50	Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts, 2016, 6, 111-115.	1.5	55
51	A New Peptidic Vector for Molecular Imaging of Apoptosis, Identified by Phage Display Technology. Journal of Biomolecular Screening, 2006, 11, 537-545.	2.6	53
52	Can the Theoretical Fitting of the Proton-Nuclear-Magnetic-Relaxation-Dispersion (Proton NMRD) Curves of Paramagnetic Complexes Be Improved by Independent Measurement of Their Self-Diffusion Coefficients?. Helvetica Chimica Acta, 2005, 88, 574-587.	1.6	52
53	Nanoparticles Based on Star Polymers as Theranostic Vectors: Endosomalâ€Triggered Drug Release Combined with MRI Sensitivity. Advanced Healthcare Materials, 2015, 4, 148-156.	7.6	52
54	Hyperthermia-induced protein corona improves the therapeutic effects of zinc ferrite spinel-graphene sheets against cancer. RSC Advances, 2014, 4, 62557-62565.	3.6	50

#	Article	IF	CITATIONS
55	Fabrication of Nanofibrous PVA/Alginateâ€&ulfate Substrates for Growth Factor Delivery. Journal of Biomedical Materials Research - Part A, 2019, 107, 403-413.	4.0	50
56	Functionalization of Small Rigid Platforms with Cyclic RGD Peptides for Targeting Tumors Overexpressing α _v l² ₃ -Integrins. Bioconjugate Chemistry, 2013, 24, 1584-1597.	3.6	49
57	A Heterobimetallic Ruthenium–Gadolinium Complex as a Potential Agent for Bimodal Imaging. Inorganic Chemistry, 2011, 50, 10005-10014.	4.0	48
58	Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer's disease. RSC Advances, 2012, 2, 5008.	3.6	48
59	A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition. Nanotechnology, 2013, 24, 055705.	2.6	47
60	Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale, 2015, 7, 3754-3767.	5.6	47
61	Synthesis and Physicochemical Characterisation of Gdâ€DTPA Derivatives as Contrast Agents for MRI. European Journal of Inorganic Chemistry, 2012, 2012, 1889-1915.	2.0	46
62	Magnetic Resonance Molecular Imaging of Vascular Cell Adhesion Molecule-1 Expression in Inflammatory Lesions Using a Peptide-Vectorized Paramagnetic Imaging Probe. Journal of Medicinal Chemistry, 2009, 52, 4725-4742.	6.4	45
63	Metal chelating crosslinkers form nanogels with high chelation stability. Journal of Materials Chemistry B, 2013, 1, 6359.	5.8	45
64	Synthesis and Physicochemical Characterization of Gdâ^'DTPAâ^'B(sLex)A, a New MRI Contrast Agent Targeted to Inflammation. Bioconjugate Chemistry, 2004, 15, 99-103.	3.6	44
65	Potential amyloid plaque-specific peptides for the diagnosis of Alzheimer's disease. Neurobiology of Aging, 2010, 31, 1679-1689.	3.1	44
66	The precise molecular location of gadolinium atoms has a significant influence on the efficacy of nanoparticulate MRI positive contrast agents. Polymer Chemistry, 2014, 5, 2592-2601.	3.9	44
67	Hepatic and Renal Toxicity Induced by TiO ₂ Nanoparticles in Rats: A Morphological and Metabonomic Study. Journal of Toxicology, 2019, 2019, 1-19.	3.0	43
68	Synthesis, Variable Temperature and Pressure 170 NMR Study of Bis(alkylamide) Derivatives of [(Gd-DTPA)(H2O)]2 â^' An Assessment of the Substitution Effect on Water Exchange Kinetics. European Journal of Inorganic Chemistry, 2002, 2002, 2686-2693.	2.0	40
69	Stereospecific binding of MRI contrast agents to human serum albumin: the case of Gd-(S)-EOB-DTPA (Eovist) and its (R) isomer. Journal of Biological Inorganic Chemistry, 2001, 6, 196-200.	2.6	39
70	Pharmacokinetic andin vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity. Contrast Media and Molecular Imaging, 2006, 1, 267-278.	0.8	39
71	Mn ^{II} -containing coordination nanoparticles as highly efficient T ₁ contrast agents for magnetic resonance imaging. Chemical Communications, 2014, 50, 6740-6743.	4.1	38
72	Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes. Scientific Reports, 2013, 3, 2173.	3.3	36

#	Article	IF	CITATIONS
73	Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging. Journal of Materials Chemistry B, 2014, 2, 387-397.	5.8	36
74	Dual nanoâ€sized contrast agents in PET/MRI: a systematic review. Contrast Media and Molecular Imaging, 2016, 11, 428-447.	0.8	36
75	Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicology Reports, 2018, 5, 878-889.	3.3	36
76	In vitro characterization of the Gd complex of [2,6-pyridinediylbis(methylene nitrilo)] tetraacetic acid (PMN-tetraacetic acid) and of its Eu analogue, suitable bimodal contrast agents for MRI and optical imaging. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6230-6233.	2.2	35
77	Polymer–gold nanohybrids with potential use in bimodal MRI/CT: enhancing the relaxometric properties of Gd(iii) complexes. Journal of Materials Chemistry, 2012, 22, 21382.	6.7	34
78	MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Physica Medica, 2019, 66, 124-132.	0.7	34
79	Paramagnetic Liposomes:  Inner versus Outer Membrane Relaxivity of DPPC Liposomes Incorporating Lipophilic Gadolinium Complexes. Langmuir, 2008, 24, 4347-4351.	3.5	33
80	Relaxivities of paramagnetic liposomes: on the importance of the chain type and the length of the amphiphilic complex. European Biophysics Journal, 2008, 37, 1007-1014.	2.2	32
81	<i>In vitro</i> biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties. Contrast Media and Molecular Imaging, 2011, 6, 236-250.	0.8	32
82	<i>In vitro</i> and <i>in vivo</i> characterization of several functionalized ultrasmall particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the blood–brain barrier: toward earlier diagnosis of Alzheimer's disease by molecular imaging. Contrast Media and Molecular Imaging, 2015, 10, 211-224.	0.8	32
83	Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives. Colloids and Surfaces B: Biointerfaces, 2017, 150, 402-407.	5.0	32
84	New mono-ether of glycerol and triterpenes with DPPH radical scavenging activity from Cameroonian propolis. Natural Product Research, 2017, 31, 1379-1389.	1.8	31
85	Influence of experimental parameters on iron oxide nanoparticle properties synthesized by thermal decomposition: size and nuclear magnetic resonance studies. Nanotechnology, 2018, 29, 165603.	2.6	31
86	Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magnetoâ€plasmonic nanoparticles on MCFâ€7 breast cancer cells. Journal of Cellular Physiology, 2019, 234, 20028-20035.	4.1	31
87	A new metallostar complex based on an aluminum(iii) 8-hydroxyquinoline core as a potential bimodal contrast agent. Dalton Transactions, 2012, 41, 10549.	3.3	30
88	Micellar self-assemblies of gadolinium(iii)/europium(iii) amphiphilic complexes as model contrast agents for bimodal imaging. Dalton Transactions, 2014, 43, 3589.	3.3	30
89	Tuning the composition of biocompatible Gd nanohydrogels to achieve hypersensitive dual T ₁ /T ₂ MRI contrast agents. Journal of Materials Chemistry B, 2014, 2, 6397-6405.	5.8	29
90	An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 321-335.	5.0	29

#	Article	IF	CITATIONS
91	Lanthanide(III) Complexes of Diethylenetriaminepentaacetic Acid (DTPA)–Bisamide Derivatives as Potential Agents for Bimodal (Optical/Magnetic Resonance) Imaging. European Journal of Inorganic Chemistry, 2013, 2013, 2629-2639.	2.0	28
92	Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles. Journal of Materials Chemistry B, 2015, 3, 1484-1494.	5.8	28
93	A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation. International Journal of Biochemistry and Cell Biology, 2016, 75, 203-211.	2.8	28
94	Synthesis and Characterization of PEGylated and Fluorinated Chitosans: Application to the Synthesis of Targeted Nanoparticles for Drug Delivery. Biomacromolecules, 2017, 18, 2756-2766.	5.4	28
95	Synthesis of a Sialyl LewisX Mimetic Conjugated with DTPA, Potential Ligand of New Contrast Agents for Medical Imaging. European Journal of Organic Chemistry, 2002, 2002, 3966-3973.	2.4	27
96	An original route to stabilize and functionalize magnetite nanoparticles for theranosis applications. Journal of Magnetism and Magnetic Materials, 2011, 323, 410-415.	2.3	27
97	Galectin-1 is a diagnostic marker involved in thyroid cancer progression. International Journal of Oncology, 2017, 51, 760-770.	3.3	27
98	Fluorinated MRI contrast agents and their versatile applications in the biomedical field. Future Medicinal Chemistry, 2019, 11, 1157-1175.	2.3	27
99	Selective liquid phase oxidation of ethyl benzene to acetophenone by palladium nanoparticles immobilized on a g-C ₃ N ₄ –rGO composite as a recyclable catalyst. New Journal of Chemistry, 2019, 43, 6921-6931.	2.8	27
100	Influence of the length of the coating molecules on the nuclear magnetic relaxivity of superparamagnetic colloids. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3644-3650.	0.8	26
101	Relaxivity and Transmetallation Stability of New Benzyl-Substituted Derivatives of GadoliniumDTPA Complexes. Helvetica Chimica Acta, 2004, 87, 1077-1089.	1.6	26
102	PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent: a biodistribution study. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 769-774.	1.5	25
103	Discrimination of Regioisomeric and Stereoisomeric Saponins from <i>Aesculus hippocastanum</i> Seeds by Ion Mobility Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2228-2237.	2.8	25
104	VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques. Biology, 2020, 9, 368.	2.8	25
105	MRI Contrast Agents. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.4	24
106	Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules, 2019, 24, 4629.	3.8	24
107	Bis(phenylethylamide) Derivatives of Gd-DTPA as Potential Receptor-Specific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2007, 2007, 2061-2067.	2.0	23
108	Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies. Journal of Nanoparticle Research, 2010, 12, 1239-1248.	1.9	23

#	Article	IF	CITATIONS
109	Development of magnetic chromatography to sort polydisperse nanoparticles in ferrofluids. Contrast Media and Molecular Imaging, 2010, 5, 126-132.	0.8	23
110	New carboxysilaneâ€coated iron oxide nanoparticles for nonspecific cell labelling. Contrast Media and Molecular Imaging, 2013, 8, 466-474.	0.8	23
111	Size-Controlled Synthesis of CoFe ₂ O ₄ Nanoparticles Potential Contrast Agent for MRI and Investigation on Their Size-Dependent Magnetic Properties. Journal of Nanomaterials, 2013, 2013, 1-9.	2.7	23
112	Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications. Nanoscale, 2021, 13, 14552-14571.	5.6	23
113	Metallic bismuth nanoparticles: Towards a robust, productive and ultrasound assisted synthesis from batch to flow-continuous chemistry. Ultrasonics Sonochemistry, 2019, 56, 167-173.	8.2	22
114	Investigation of non-covalent interactions between paramagnetic complexes and human serum albumin by electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 1919-1924.	1.5	21
115	An Assessment of the Potential Relationship between the Charge of Gd–DTPA Complexes and the Exchange Rate of the Water Coordinated to the Metal. European Journal of Inorganic Chemistry, 2008, 2008, 4369-4379.	2.0	21
116	Fluorescent magnetic nanoparticles for cell labeling: Flux synthesis of manganite particles and novel functionalization of silica shell. Journal of Colloid and Interface Science, 2015, 447, 97-106.	9.4	21
117	Optimising the design of paramagnetic MRI contrast agents: influence of backbone substitution on the water exchange rate of Gd-DTPA derivatives. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2004, 16, 235-245.	2.0	20
118	High-Relaxivity and Luminescent Silica Nanoparticles As Multimodal Agents for Molecular Imaging. Langmuir, 2013, 29, 3419-3427.	3.5	20
119	Magnetofluorescent micellar complexes of terbium(<scp>iii</scp>) as potential bimodal contrast agents for magnetic resonance and optical imaging. Chemical Communications, 2015, 51, 2984-2986.	4.1	20
120	Metal Oxide Particles and Their Prospects for Applications. , 2018, , 3-42.		20
121	Reinvestigation of the mechanism of polymerization of β-butyrolactone from 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Polymer Chemistry, 2018, 9, 1840-1847.	3.9	20
122	Medical Applications of Metallic Bismuth Nanoparticles. Pharmaceutics, 2021, 13, 1793.	4.5	20
123	Characterization of iminopropadienone ions and neutrals in a tandem mass spectrometer. Rapid Communications in Mass Spectrometry, 1992, 6, 667-670.	1.5	19
124	New Bifunctional Contrast Agents: Bis-Amide Derivatives ofC-Substituted Gd-DTPA. European Journal of Inorganic Chemistry, 2004, 2004, 463-468.	2.0	19
125	A Modular Approach towards the Synthesis of Targetâ€Specific MRI Contrast Agents. European Journal of Inorganic Chemistry, 2011, 2011, 3577-3585.	2.0	19
126	Development of a peptideâ€functionalized imaging nanoprobe for the targeting of (FXYD2)γa as a highly specific biomarker of pancreatic beta cells. Contrast Media and Molecular Imaging, 2015, 10, 398-412.	0.8	19

#	Article	IF	CITATIONS
127	Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T1-Weighted Magnetic Resonance Imaging (MRI). Nanomaterials, 2020, 10, 757.	4.1	19
128	Mn ²⁺ Complexes with Pyclen-Based Derivatives as Contrast Agents for Magnetic Resonance Imaging: Synthesis and Relaxometry Characterization. Inorganic Chemistry, 2021, 60, 3604-3619.	4.0	19
129	Human Alveolar Epithelial Cell Responses to Core–Shell Superparamagnetic Iron Oxide Nanoparticles (SPIONs). Langmuir, 2015, 31, 3829-3839.	3.5	18
130	VSION as high field MRI T1 contrast agent: evidence of their potential as positive contrast agent for magnetic resonance angiography. Nanotechnology, 2018, 29, 265103.	2.6	18
131	Structure and Dynamics of Lanthanide Complexes of Triethylenetetramine-N,N,N?,N?,N???,N???-hexaacetic Acid (H6ttha) and of Diamides H4ttha(NHR) Derived from H6ttha as Studied by NMR, NMRD, and EPR. Helvetica Chimica Acta, 2005, 88, 618-632.	1.6	17
132	Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe. Chemistry - A European Journal, 2016, 22, 4521-4527.	3.3	17
133	Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging. Journal of the Iranian Chemical Society, 2016, 13, 87-93.	2.2	17
134	Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI). Nanotechnology, 2017, 28, 055705.	2.6	17
135	Study of non-covalent interactions between MRI contrast agents and human serum albumin by NMR diffusometry. Journal of Biological Inorganic Chemistry, 2009, 14, 683-691.	2.6	16
136	Molecular Imaging: From Bench to Clinic. BioMed Research International, 2014, 2014, 1-3.	1.9	16
137	Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles. Nanotechnology, 2019, 30, 374002.	2.6	16
138	Synthesis and Physicochemical Characterization of Gd-C4-Thyroxin-DTPA, a Potential MRI Contrast Agent. Evaluation of Its Affinity for Human Serum Albumin by Proton Relaxometry, NMR Diffusometry, and Electrospray Mass Spectrometry. Journal of Physical Chemistry B, 2010, 114, 3689-3697.	2.6	15
139	Importance of DOTA derivatives in bimodal imaging. Israel Journal of Chemistry, 2017, 57, 800-808.	2.3	15
140	Embedding of superparamagnetic iron oxide nanoparticles into membranes of well-defined poly(ethylene oxide)-block-poly(Îμ-caprolactone) nanoscale magnetovesicles as ultrasensitive MRI probes of membrane bio-degradation. Journal of Materials Chemistry B, 2019, 7, 4692-4705.	5.8	15
141	Tailored ultra-small Prussian blue-based nanoparticles for MRI imaging and combined photothermal/photoacoustic theranostics. Chemical Communications, 2019, 55, 14844-14847.	4.1	15
142	Bifunctional Gd(III) and Tb(III) chelates based on a pyridine– <i>bis</i> (iminodiacetate) platform, suitable optical probes and contrast agents for magnetic resonance imaging. Contrast Media and Molecular Imaging, 2014, 9, 300-312.	0.8	14
143	Magnetofluorescent micelles incorporating Dy ^{III} –DOTA as potential bimodal agents for optical and high field magnetic resonance imaging. Dalton Transactions, 2016, 45, 4791-4801.	3.3	14
144	Toxicity of TiO2 nanoparticles on the NRK52E renal cell line. Molecular and Cellular Toxicology, 2017, 13, 419-431.	1.7	14

#	Article	IF	CITATIONS
145	Lipids constituents from <i>Gardenia aqualla</i> Stapf & Hutch. Open Chemistry, 2018, 16, 371-376.	1.9	14
146	Slow clearance gadolinium-based extracellular and intravascular contrast media for three-dimensional MR angiography. Journal of Magnetic Resonance Imaging, 2001, 13, 588-593.	3.4	13
147	The Gd ³⁺ complex of 1,4,7,10â€ŧetraazacyclododecaneâ€┨,4,7,10â€ŧetraacetic acid mono(<i>p</i> â€isothiocyanatoanilide) conjugated to inulin: a potential stable macromolecular contrast agent for MRI. Contrast Media and Molecular Imaging, 2011, 6, 482-491.	0.8	13
148	Modulation of Relaxivity, Suspension Stability, and Biodistribution of Dendronized Iron Oxide Nanoparticles as a Function of the Organic Shell Design. Particle and Particle Systems Characterization, 2015, 32, 552-560.	2.3	13
149	HR-MAS NMR Spectroscopy: An Innovative Tool for the Characterization of Iron Oxide Nanoparticles Tracers for Molecular Imaging. Analytical Chemistry, 2015, 87, 1701-1710.	6.5	13
150	Functionalization of the PEG Corona of Nanoparticles by Clip Photochemistry in Water: Application to the Grafting of RGD Ligands on PEGylated USPIO Imaging Agent. Bioconjugate Chemistry, 2015, 26, 822-829.	3.6	13
151	Bimodal Probe for Magnetic Resonance Imaging and Photoacoustic Imaging Based on a PCTAâ€Derived Gadolinium(III) Complex and ZW800–1. European Journal of Inorganic Chemistry, 2019, 2019, 3354-3365.	2.0	13
152	Development of an LDL Receptor-Targeted Peptide Susceptible to Facilitate the Brain Access of Diagnostic or Therapeutic Agents. Biology, 2020, 9, 161.	2.8	13
153	Synthesis and characterization of a new lanthanide based MRI contrast agent, potential and versatile tracer for multimodal imaging. Tetrahedron, 2014, 70, 5450-5454.	1.9	12
154	Thermodynamic stability and kinetic inertness of a Gd–DTPA bisamide complex grafted onto gold nanoparticles. Contrast Media and Molecular Imaging, 2015, 10, 179-187.	0.8	12
155	Screening for peptides targeted to IL-7Rα for molecular imaging of rheumatoid arthritis synovium. Arthritis Research and Therapy, 2016, 18, 230.	3.5	12
156	Washing effect on superparamagnetic iron oxide nanoparticles. Data in Brief, 2016, 7, 1296-1301.	1.0	12
157	Anti-Inflammatory and Analgesic Effect of Arachic Acid Ethyl Ester Isolated from Propolis. BioMed Research International, 2020, 2020, 1-8.	1.9	12
158	Lanthanide complexes for magnetic resonance and optical molecular imaging. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2009, 53, 586-603.	0.7	12
159	Albumin-bound MRI contrast agents: the dilemma of the rotational correlation time. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2001, 12, 135-140.	2.0	11
160	Synthesis and Physicochemical Characterization of New C-Functionalized Derivatives of the Gadolinium(III) Complex with 3,6,10-Tris(carboxymethyl)-3,6,10-triazadodecanedioic Acid (H5ttda) Exhibiting Fast Water Exchange – Potential Paramagnetic Reporters for Molecular Imaging. Helvetica Chimica Acta, 2007, 90, 562-573.	1.6	11
161	Ultrasound-targeted microbubble destruction: toward a new strategy for diabetes treatment. Drug Discovery Today, 2016, 21, 540-543.	6.4	11
162	How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. Journal of Materials Chemistry B, 2017, 5, 5152-5164.	5.8	11

#	Article	IF	CITATIONS
163	Optimizing Water Exchange Rates and Rotational Mobility for Highâ€Relaxivity of a Novel Gdâ€ <scp>DO</scp> 3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for <scp>MRI</scp> . Chemistry and Biodiversity, 2018, 15, e1700487.	2.1	11
164	Nanodiamonds as nanomaterial for biomedical field. Frontiers of Materials Science, 2021, 15, 334-351.	2.2	11
165	Synthesis of Isoxazolo[4,5â€D]Pyrimidinones, and their Isomerization into Oxazolo[4,5â€D]Pyrimidinones on Flash Vacuum Pyrolysis. Bulletin Des Sociétés Chimiques Belges, 1994, 103, 181-184.	0.0	10
166	Validation by Magnetic Resonance Imaging of the Diagnostic Potential of a Heptapeptide-Functionalized Imaging Probe Targeted to Amyloid-β and Able to Cross the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2017, 60, 1547-1565.	2.6	10
167	Evaluation of the Active Targeting of Melanin Granules after Intravenous Injection of Dendronized Nanoparticles. Molecular Pharmaceutics, 2018, 15, 536-547.	4.6	10
168	Blocked-micropores, surface functionalized, bio-compatible and silica-coated iron oxide nanocomposites as advanced MRI contrast agent. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	9
169	Early detection of colonic dysplasia by magnetic resonance molecular imaging with a contrast agent raised against the colon cancer marker MUC5AC. Contrast Media and Molecular Imaging, 2016, 11, 211-221.	0.8	9
170	New polyaminocarboxylate macrocycles containing phenolate binding units: synthesis, luminescent and relaxometric properties of their lanthanide complexes. Dalton Transactions, 2017, 46, 4654-4668.	3.3	9
171	Flying Cages in Traveling Wave Ion Mobility: Influence of the Instrumental Parameters on the Topology of the Host–Guest Complexes. Journal of the American Society for Mass Spectrometry, 2018, 29, 121-132.	2.8	9
172	lmaging of Human Insulin Secreting Cells with Gd-DOTA-P88, a Paramagnetic Contrast Agent Targeting the Beta Cell Biomarker FXYD2γa. Molecules, 2018, 23, 2100.	3.8	9
173	Simultaneous "O–Alkyl―and "O–Acyl―Lactone Cleavages from Hydroxy–Carboxylic Acid Initiators Direct Access to Multiblock Architectures. Macromolecules, 2019, 52, 6382-6392.	s: 4.8	9
174	Comparison of MRI Properties between Multimeric DOTAGA and DO3A Gadolinium-Dendron Conjugates. Inorganic Chemistry, 2019, 58, 12798-12808.	4.0	9
175	Accelerating effect of crown ethers on the lactide polymerization catalysed by potassium acetate. Catalysis Science and Technology, 2021, 11, 4387-4391.	4.1	9
176	Impact of the chain length on the biodistribution profiles of PEGylated iron oxide nanoparticles: a multimodal imaging study. Journal of Materials Chemistry B, 2021, 9, 5055-5068.	5.8	9
177	Magnetic and radio-labeled bio-hybrid scaffolds to promote and track <i>in vivo</i> the progress of bone regeneration. Biomaterials Science, 2021, 9, 7575-7590.	5.4	9
178	Development of New Glucosylated Derivatives of Gadolinium Diethylenetriaminepentaacetic for Magnetic Resonance Angiography. Investigative Radiology, 2003, 38, 320-333.	6.2	8
179	Relaxometric, Thermodynamic and Kinetic Studies of Lanthanide(III) Complexes of DO3Aâ€Based Propylphosphonates. European Journal of Inorganic Chemistry, 2009, 2009, 3298-3306.	2.0	8
180	Magnetofluorescent Nanoaggregates Incorporating Terbium(III) Complexes as Potential Bimodal Agents for Magnetic Resonance and Optical Imaging. European Journal of Inorganic Chemistry, 2015, 2015, 4572-4578.	2.0	8

#	Article	IF	CITATIONS
181	Drawing on biology to inspire molecular design: a redox-responsive MRI probe based on Gd(<scp>iii</scp>)-nicotinamide. Chemical Communications, 2018, 54, 12986-12989.	4.1	8
182	Molecular and cellular biology of PCSK9: impact on glucose homeostasis. Journal of Drug Targeting, 2022, 30, 948-960.	4.4	8
183	Preliminary studies of ⁶⁸ Ga-NODA-USPION-BBN as a dual-modality contrast agent for use in positron emission tomography/magnetic resonance imaging. Nanotechnology, 2020, 31, 015102.	2.6	7
184	Antimicrobial and α-glucosidase inhibitory activities of chemical constituents from Gardenia aqualla (Rubiaceae). Natural Product Research, 2022, , 1-6.	1.8	7
185	Synthesis and characterization of new lowâ€molecularâ€weight lysineâ€conjugated Gdâ€DTPA contrast agents. Contrast Media and Molecular Imaging, 2011, 6, 229-235.	0.8	6
186	Supramolecular Adducts of Negatively Charged Lanthanide(III) DOTP Chelates and Cyclodextrins Functionalized with Ammonium Groups: Mass Spectrometry and Nuclear Magnetic Resonance Studies. European Journal of Inorganic Chemistry, 2012, 2012, 2087-2098.	2.0	6
187	Design, Characterization and Molecular Modeling of New Fluorinated Paramagnetic Contrast Agents for Dual 1H/19F MRI. Magnetochemistry, 2020, 6, 8.	2.4	6
188	A Greener Chemistry Process Using Microwaves in Continuous Flow to Synthesize Metallic Bismuth Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 9177-9187.	6.7	6
189	A new flavonoid glycoside from <i>Tapinanthus sp.</i> (Loranthaceae) and evaluation of anticancer activity of extract and some isolated compounds. Natural Product Research, 2022, 36, 4085-4093.	1.8	6
190	A new abietane-type diterpenoid from roots of <i>Burkea africana</i> Hook (Fabaceae) with <i>α-</i> amylase inhibitory potential. Natural Product Research, 2022, 36, 4132-4139.	1.8	6
191	Noncovalent Binding of Some New Lipophilic Gadolinium  DTPA Complexes to Human Serum Albumin. A Structure–Affinity Relationship. Chemistry and Biodiversity, 2010, 7, 2846-2855.	2.1	5
192	Interaction of bare and gold-coated superparamagnetic iron oxide nanoparticles with fetal bovine serum. Journal of the Iranian Chemical Society, 2011, 8, 944-950.	2.2	5
193	Optical and relaxometric properties of monometallic (EuIII, TbIII, GdIII) and heterobimetallic (Rel/GdIII) systems based on a functionalized bipyridine-containing acyclic ligand. Dalton Transactions, 2016, 45, 8379-8393.	3.3	5
194	Chemical and <i>in vitro</i> characterizations of a promising bimodal AGuIX probe able to target apoptotic cells for applications in MRI and optical imaging. Contrast Media and Molecular Imaging, 2016, 11, 381-395.	0.8	5
195	Novel Polymeric Micelles-Coated Magnetic Nanoparticles for In Vivo Bioimaging of Liver: Toxicological Profile and Contrast Enhancement. Materials, 2020, 13, 2722.	2.9	5
196	Molecular Imaging of Galectin-1 Expression as a Biomarker of Papillary Thyroid Cancer by Using Peptide-Functionalized Imaging Probes. Biology, 2020, 9, 53.	2.8	5
197	Functionalized silica nanoplatform as a bimodal contrast agent for MRI and optical imaging. Nanoscale, 2021, 13, 16509-16524.	5.6	5
198	Synthesis of CdTe QDs by hydrothermal method, with tunable emission fluorescence. Materials Research Express, 2015, 2, 095901.	1.6	4

#	Article	IF	CITATIONS
199	Structure of CoFe2O4@CdTe nanocomposite with core/shell structure for high-performance Bi-modal imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 467-473.	4.7	4
200	Surface engineering of silica nanoparticles with a gadolinium–PCTA complex for efficient <i>T</i> ₁ -weighted MRI contrast agents. New Journal of Chemistry, 2020, 44, 18031-18047.	2.8	4
201	A new phenyl alkyl ester and a new combretin triterpene derivative from Combretum fragrans F. Hoffm (Combretaceae) and antiproliferative activity. Open Chemistry, 2020, 18, 1523-1531.	1.9	4
202	Development of new glucosylated derivatives of gadolinium diethylenetriaminepentaacetic for magnetic resonance angiography. Investigative Radiology, 2003, 38, 320-33.	6.2	4
203	Synthesis and Characterization of Conjugated Hyaluronic Acids. Application to Stability Studies of Chitosan-Hyaluronic Acid Nanogels Based on Fluorescence Resonance Energy Transfer. Gels, 2022, 8, 182.	4.5	4
204	Polymeric/Inorganic Multifunctional Nanoparticles for Simultaneous Drug Delivery and Visualization. Materials Research Society Symposia Proceedings, 2010, 1257, 1.	0.1	3
205	Interaction between Iron Oxide Nanoparticles and HepaRG Cells: A Preliminary <i>In Vitro</i> Evaluation. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	3
206	Synthesis and characterization of monophosphinic acid DOTA derivative: A smart tool with functionalities for multimodal imaging. Bioorganic and Medicinal Chemistry, 2017, 25, 4297-4303.	3.0	3
207	Toward a new and noninvasive diagnostic method of papillary thyroid cancer by using peptide vectorized contrast agents targeted to galectin-1. Medical Oncology, 2017, 34, 184.	2.5	3
208	Synthesis and Relaxometric Characterization of New Poly[<i>N</i> , <i>N</i> â€bis(3â€aminopropyl)glycine] (PAPGly) Dendrons Gdâ€Based Contrast Agents and Their <i>in Vivo</i> Study by Using the Dynamic Contrastâ€Enhanced MRI Technique at Low Field (1 T). Chemistry and Biodiversity, 2019, 16, e1900322.	2.1	3
209	Backbone Cleavages of Protonated Peptoids upon Collision-Induced Dissociation: Competitive and Consecutive B-Y and A ₁ -Y _X Reactions. Journal of the American Society for Mass Spectrometry, 2019, 30, 2726-2740.	2.8	3
210	Characterization of new diimines of carbon suboxide by tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 1994, 8, 329-332.	1.5	2
211	NMR chemical shift study of the interaction of selected peptides with liposomal and micellar models of apoptotic cells. Journal of Biological Inorganic Chemistry, 2014, 19, 1367-1376.	2.6	2
212	Dual-Modality Imaging. , 2018, , 165-196.		2
213	Antifungal potential of extracts, fractions and compounds from Uvaria comperei (Annonaceae) and Oxyanthus unilocularis (Rubiaceae). Natural Product Research, 2020, 35, 1-5.	1.8	2
214	A new method of extracting polyphenols from honey using a biosorbent compared to the commercial resin amberlite XAD2. Journal of Separation Science, 2021, 44, 2089-2096.	2.5	2
215	A new phenanthrene derivative from Entada abyssinica with antimicrobial and antioxidant properties. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.7	2
216	Pyclen-based Gd complex with ionisable side-chain as a contrastophore for the design of hypersensitive MRI nanoprobes: Synthesis and relaxation studies. Results in Chemistry, 2021, 3, 100237.	2.0	2

#	Article	IF	CITATIONS
217	Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake. Nanoscale, 2022, 14, 5884-5898.	5.6	2
218	Characterization of commercial iron oxide clusters with high transverse relaxivity. Journal of Magnetic Resonance Open, 2022, 10-11, 100054.	1.1	2
219	Antibacterial and antioxidant activities and phytochemical composition of <i>Stereospermum kunthianum</i> root bark. Natural Product Research, 2021, , 1-11.	1.8	2
220	Modulation of adiponectin receptors AdipoR1 and AdipoR2 by phage display-derived peptides in inÂvitro and inÂvivo models. Journal of Drug Targeting, 2020, 28, 831-851.	4.4	1
221	¹ Hâ€NMR relaxometric studies of interaction between apoptosis specific MRI paramagnetic contrast agents and micellar models of apoptotic cells. Magnetic Resonance in Chemistry, 2016, 54, 568-574.	1.9	0
222	Bimodal Probe for Magnetic Resonance Imaging and Photoacoustic Imaging Based on a PCTA-Derived Gadolinium(III) Complex and ZW800-1. European Journal of Inorganic Chemistry, 2019, 2019, 3353-3353.	2.0	0
223	Chemical Constituents and Biological Activities of the Aerial Parts of Cyperus rotundus (Cypereaceae). Asian Journal of Chemistry, 2021, 33, 1935-1940.	0.3	0
224	Characterization of Organic Molecules Grafted to Silica or Bismuth Nanoparticles by NMR. Applied Nano, 2021, 2, 330-343.	2.0	0
225	Editorial for "New Cluster Analysis Method for Quantitative <scp>DCEâ€MRI</scp> Assessing Tumor Heterogeneity Induced by <scp>E7130</scp> Treatment to a Breast Cancer Mouse Modelâ€. Journal of Magnetic Resonance Imaging, 2022, 56, 1832-1833.	3.4	0