
Santiago Perez-Hoyos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations. Astronomy and Astrophysics, 2022, 659, A136.	5.1	8
2	Convective storms in closed cyclones in Jupiter's South Temperate Belt: (I) observations. Icarus, 2022, 380, 114994.	2.5	5
3	Hazy Blue Worlds: A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	18
4	Dust particle size, shape and optical depth during the 2018/MY34 martian global dust storm retrieved by MSL Curiosity rover Navigation Cameras. Icarus, 2021, 354, 114021.	2.5	17
5	Latitudinal variation of methane mole fraction above clouds in Neptune's atmosphere from VLT/MUSE-NFM: Limb-darkening reanalysis. Icarus, 2021, 357, 114277.	2.5	9
6	Jupiter's Great Red Spot: Strong Interactions With Incoming Anticyclones in 2019. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006686.	3.6	12
7	The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.	8.1	57
8	Jupiter's third largest and longest-lived oval: Color changes and dynamics. Icarus, 2021, 361, 114394.	2.5	4
9	Assessing Multi‣tream Radiative Transfer Schemes for the Calculation of Aerosol Radiative Forcing in the Martian Atmosphere. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006889.	3.6	4
10	Vertical Distribution of Aerosols and Hazes Over Jupiter's Great Red Spot and Its Surroundings in 2016 From HST/WFC3 Imaging. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006996.	3.6	4
11	Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter's South Temperate Belt. Icarus, 2020, 336, 113475.	2.5	15
12	Saturn atmospheric dynamics one year after Cassini: Long-lived features and time variations in the drift of the Hexagon. Icarus, 2020, 336, 113429.	2.5	13
13	A complex storm system in Saturn's north polar atmosphere in 2018. Nature Astronomy, 2020, 4, 180-187.	10.1	13
14	Color and aerosol changes in Jupiter after a North Temperate Belt disturbance. Icarus, 2020, 352, 114031.	2.5	17
15	Multilayer hazes over Saturn's hexagon from Cassini ISS limb images. Nature Communications, 2020, 11, 2281.	12.8	6
16	Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope. Astronomical Journal, 2019, 158, 126.	4.7	30
17	Hazes and clouds in a singular triple vortex in Saturn's atmosphere from HST/WFC3 multispectral imaging. Icarus, 2019, 333, 22-36.	2.5	7
18	Characterisation of Martian dust aerosol phase function from sky radiance measurements by MSL engineering cameras. Icarus, 2019, 330, 16-29.	2.5	11

#	Article	IF	CITATIONS
19	Dust particle size and optical depth on Mars retrieved by the MSL navigation cameras. Icarus, 2019, 319, 43-57.	2.5	28
20	Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations. Journal of Geophysical Research E: Planets, 2018, 123, 145-162.	3.6	41
21	A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere. Icarus, 2018, 302, 499-513.	2.5	14
22	Haze and cloud structure of Saturn's North Pole and Hexagon Wave from Cassini/ISS imaging. Icarus, 2018, 305, 284-300.	2.5	19
23	The Great Saturn Storm of 2010–2011. , 2018, , 377-416.		9
24	Less absorbed solar energy and more internal heat for Jupiter. Nature Communications, 2018, 9, 3709.	12.8	50
25	Neptune long-lived atmospheric features in 2013–2015 from small (28-cm) to large (10-m) telescopes. Icarus, 2017, 295, 89-109.	2.5	21
26	Jupiter cloud morphology and zonal winds from groundâ€based observations before and during Juno's first perijove. Geophysical Research Letters, 2017, 44, 4669-4678.	4.0	21
27	A planetaryâ€scale disturbance in the most intense Jovian atmospheric jet from JunoCam and groundâ€based observations. Geophysical Research Letters, 2017, 44, 4679-4686.	4.0	35
28	The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature, 2017, 550, 219-223.	27.8	179
29	Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to 1.7 <i>î¼</i> m with PlanetCam-UPV/EHU. Astronomy and Astrophysics, 2017, 607, A72.	5.1	13
30	<i>PlanetCam UPV/EHU</i> : A Two-channel Lucky Imaging Camera for Solar System Studies in the Spectral Range 0.38–1.7 <i>î¼</i> m. Publications of the Astronomical Society of the Pacific, 2016, 128, 035002.	3.1	23
31	VENUS CLOUD MORPHOLOGY AND MOTIONS FROM GROUND-BASED IMAGES AT THE TIME OF THE AKATSUKI ORBIT INSERTION ^{â^—} . Astrophysical Journal Letters, 2016, 833, L7.	8.3	16
32	Saturn's tropospheric particles phase function and spatial distribution from Cassini ISS 2010–11 observations. Icarus, 2016, 277, 1-18.	2.5	19
33	An enduring rapidly moving storm as a guide to Saturn's Equatorial jet's complex structure. Nature Communications, 2016, 7, 13262.	12.8	21
34	Spatial distribution of jovian clouds, hazes and colors from Cassini ISS multi-spectral images. Icarus, 2016, 267, 34-50.	2.5	9
35	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
36	Spectral comparison and stability of red regions on Jupiter. Journal of Geophysical Research E: Planets, 2015, 120, 483-494.	3.6	6

#	Article	IF	CITATIONS
37	An extremely high-altitude plume seen at Mars' morning terminator. Nature, 2015, 518, 525-528.	27.8	24
38	Saturn's giant storm and global radiant energy. Geophysical Research Letters, 2015, 42, 2144-2148.	4.0	12
39	Instrumental methods for professional and amateur collaborations in planetary astronomy. Experimental Astronomy, 2014, 38, 91-191.	3.7	47
40	The Aula EspaZio Gela and the Master of Space Science and Technology in the Universidad del PaÃs Vasco (University of the Basque Country). European Journal of Engineering Education, 2014, 39, 518-526.	2.3	16
41	The longâ€ŧerm steady motion of Saturn's hexagon and the stability of its enclosed jet stream under seasonal changes. Geophysical Research Letters, 2014, 41, 1425-1431.	4.0	43
42	Glory revealed in disk-integrated photometry of Venus. Astronomy and Astrophysics, 2014, 566, L1.	5.1	28
43	Atmospheric dynamics of Saturn's 2010 giant storm. Nature Geoscience, 2013, 6, 525-529.	12.9	26
44	Impact flux on Jupiter: From superbolides to large-scale collisions. Astronomy and Astrophysics, 2013, 560, A55.	5.1	29
45	Colors of Jupiter's large anticyclones and the interaction of a Tropical Red Oval with the Great Red Spot in 2008. Journal of Geophysical Research E: Planets, 2013, 118, 2537-2557.	3.6	15
46	Probing clouds in planets with a simple radiative transfer model: the Jupiter case. European Journal of Physics, 2012, 33, 1611-1624.	0.6	10
47	PlanetCam UPV/EHU: a simultaneous visible and near infrared lucky-imaging camera to study solar system objects. , 2012, , .		4
48	Ground-based observations of the long-term evolution and death of Saturn's 2010 Great White Spot. Icarus, 2012, 220, 561-576.	2.5	36
49	Emitted power of Jupiter based on Cassini CIRS and VIMS observations. Journal of Geophysical Research, 2012, 117, .	3.3	17
50	Vertical cloud structure of the 2009 Jupiter impact based on HST/WFC3 observations. Icarus, 2012, 221, 1061-1078.	2.5	8
51	The 2009–2010 fade of Jupiter's South Equatorial Belt: Vertical cloud structure models and zonal winds from visible imaging. Icarus, 2012, 217, 256-271.	2.5	33
52	Cloud structure of Saturn's 2010 storm from ground-based visual imaging. Icarus, 2012, 219, 142-149.	2.5	17
53	Long-term evolution of the aerosol debris cloud produced by the 2009 impact on Jupiter. Icarus, 2011, 214, 462-476.	2.5	13
54	Saturn's zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus, 2011, 215, 62-74.	2.5	88

#	Article	IF	CITATIONS
55	The atmospheric influence, size and possible asteroidal nature of the July 2009 Jupiter impactor. Icarus, 2011, 211, 587-602.	2.5	29
56	Dynamics of Jupiter's equatorial region at cloud top level from Cassini and HST images. Icarus, 2011, 211, 1242-1257.	2.5	24
57	JUPITER AFTER THE 2009 IMPACT: <i>HUBBLE SPACE TELESCOPE</i> IMAGING OF THE IMPACT-GENERATED DEBRIS AND ITS TEMPORAL EVOLUTION. Astrophysical Journal Letters, 2010, 715, L150-L154.	8.3	36
58	FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER. Astrophysical Journal Letters, 2010, 721, L129-L133.	8.3	28
59	A long-lived cyclone in Saturn's atmosphere: Observations and models. Icarus, 2010, 209, 665-681.	2.5	17
60	The Planetary Laboratory for Image Analysis (PLIA). Advances in Space Research, 2010, 46, 1120-1138.	2.6	37
61	The international outer planets watch atmospheres node database of giant-planet images. Planetary and Space Science, 2010, 58, 1152-1159.	1.7	40
62	A multi-wavelength study of the 2009 impact on Jupiter: Comparison of high resolution images from Gemini, Keck and HST. Icarus, 2010, 210, 722-741.	2.5	32
63	A strong high altitude narrow jet detected at Saturn's equator. Geophysical Research Letters, 2010, 37,	4.0	20
64	THE IMPACT OF A LARGE OBJECT ON JUPITER IN 2009 JULY. Astrophysical Journal Letters, 2010, 715, L155-L159.	8.3	47
65	Venus Spectrophotometry During the MESSENGER Mission Fly-By. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 455-455.	0.3	Ο
66	Evolution of the cloud field and wind structure of Jupiter's highest speed jet during a huge disturbance. Astronomy and Astrophysics, 2009, 507, 513-522.	5.1	9
67	The jovian anticyclone BAI. Motions and interaction with the GRS from observations and non-linear simulations. Icarus, 2009, 203, 486-498.	2.5	26
68	The jovian anticyclone BAIII. Aerosol properties and color change. Icarus, 2009, 203, 516-530.	2.5	29
69	Brightness power spectral distribution and waves in Jupiter's upper cloud and hazes. Icarus, 2009, 202, 181-196.	2.5	21
70	Vertical shears in Saturn's eastward jets at cloud level. Icarus, 2009, 201, 818-820.	2.5	18
71	The jovian anticyclone BAII. Circulation and interaction with the zonal jets. Icarus, 2009, 203, 499-515.	2.5	54
72	Jupiter's polar clouds and waves from Cassini and HST images: 1993–2006. Icarus, 2008, 194, 173-185.	2.5	31

#	Article	IF	CITATIONS
73	Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature, 2008, 451, 437-440.	27.8	82
74	Variable winds on Venus mapped in three dimensions. Geophysical Research Letters, 2008, 35, .	4.0	119
75	The three-dimensional structure of Saturn's equatorial jet at cloud level. Icarus, 2007, 187, 510-519.	2.5	37
76	Two Years of Saturn's Exploration by the Cassini Spacecraft: Atmospheric Studies. , 2007, , 303-310.		0
77	Short-term changes in the belt/zone structure of Saturn's Southern Hemisphere (1996–2004). Astronomy and Astrophysics, 2006, 460, 641-645.	5.1	15
78	On the vertical wind shear of Saturn's Equatorial Jet at cloud level. Icarus, 2006, 180, 161-175.	2.5	37
79	Structure, temporal variations and radiative flux in Saturn's clouds. Planetary and Space Science, 2006, 54, 830-831.	1.7	Ο
80	Solar flux in Saturn's atmosphere: Penetration and heating rates in the aerosol and cloud layers. Icarus, 2006, 180, 368-378.	2.5	32
81	A strong vortex in Saturn's South Pole. Icarus, 2006, 184, 524-531.	2.5	46
82	Saturn's cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Icarus, 2005, 176, 155-174.	2.5	78
83	Saturn's cloud morphology and zonal winds before the Cassini encounter. Icarus, 2004, 170, 519-523.	2.5	45
84	Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation. American Journal of Physics, 2004, 72, 767-774.	0.7	57
85	A strong decrease in Saturn's equatorial jet at cloud level. Nature, 2003, 423, 623-625.	27.8	74
86	No Hexagonal Wave around Saturn's Southern Pole. Icarus, 2002, 160, 216-219.	2.5	21