Philip A Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634298/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic deep mutational scanning of the human executioner caspases reveals differences in structure and regulation. Cell Death Discovery, 2022, 8, 7.	4.7	9
2	Yeast surface display-based identification of ACE2 mutations that modulate SARS-CoV-2 spike binding across multiple mammalian species. Protein Engineering, Design and Selection, 2022, 35, .	2.1	1
3	Machine learning to navigate fitness landscapes for protein engineering. Current Opinion in Biotechnology, 2022, 75, 102713.	6.6	45
4	Competitive SNP-LAMP probes for rapid and robust single-nucleotide polymorphism detection. Cell Reports Methods, 2022, 2, 100242.	2.9	3
5	Inferring Protein Sequence-Function Relationships with Large-Scale Positive-Unlabeled Learning. Cell Systems, 2021, 12, 92-101.e8.	6.2	33
6	Discovery of human ACE2 variants with altered recognition by the SARS-CoV-2 spike protein. PLoS ONE, 2021, 16, e0251585.	2.5	11
7	Single-cell nucleic acid profiling in droplets (SNAPD) enables high-throughput analysis of heterogeneous cell populations. Nucleic Acids Research, 2021, 49, e103-e103.	14.5	6
8	Active and machine learning-based approaches to rapidly enhance microbial chemical production. Metabolic Engineering, 2021, 67, 216-226.	7.0	15
9	Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. Nature Communications, 2021, 12, 5825.	12.8	50
10	Neural networks to learn protein sequence–function relationships from deep mutational scanning data. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	73
11	Investigating the dynamics of microbial consortia in spatially structured environments. Nature Communications, 2020, 11, 2418.	12.8	60
12	Microbial Interaction Network Inference in Microfluidic Droplets. Cell Systems, 2019, 9, 229-242.e4.	6.2	91
13	InÂVivo Selection of a Computationally Designed SCHEMA AAV Library Yields a Novel Variant for Infection of Adult Neural Stem Cells in the SVZ. Molecular Therapy, 2018, 26, 304-319.	8.2	72
14	Identifying Residueâ€Residue Contacts via Deep Mutational Scanning. FASEB Journal, 2018, 32, 792.9.	0.5	0
15	Dissecting enzyme function with microfluidic-based deep mutational scanning. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7159-7164.	7.1	197
16	Chimeragenesis of distantlyâ€related proteins by noncontiguous recombination. Protein Science, 2013, 22, 231-238.	7.6	31
17	Efficient Sampling of SCHEMA Chimera Families to Identify Useful Sequence Elements. Methods in Enzymology, 2013, 523, 351-368.	1.0	18
18	Navigating the protein fitness landscape with Gaussian processes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E193-201.	7.1	252

Philip A Romero

#	Article	IF	CITATIONS
19	Directed Evolution of Protein-Based Neurotransmitter Sensors for MRI. Methods in Molecular Biology, 2013, 995, 193-205.	0.9	3
20	Random Field Model Reveals Structure of the Protein Recombinational Landscape. PLoS Computational Biology, 2012, 8, e1002713.	3.2	10
21	Flow focusing geometry generates droplets through a plug and squeeze mechanism. Lab on A Chip, 2012, 12, 5130.	6.0	41
22	SCHEMA-Designed Variants of Human Arginase I and II Reveal Sequence Elements Important to Stability and Catalysis. ACS Synthetic Biology, 2012, 1, 221-228.	3.8	52
23	Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nature Biotechnology, 2010, 28, 264-270.	17.5	151
24	Exploring protein fitness landscapes by directed evolution. Nature Reviews Molecular Cell Biology, 2009, 10, 866-876.	37.0	890