Matteo Bellone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634083/publications.pdf

Version: 2024-02-01

109321 123424 4,273 115 35 61 citations h-index g-index papers 127 127 127 6281 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cancer bio-immunotherapy XVIII annual NIBIT-(Italian network for tumor biotherapy) meeting, October $15 \hat{a} \in 16$, 2020. Cancer Immunology, Immunotherapy, 2022, , 1.	4.2	0
2	The Insider: Impact of the Gut Microbiota on Cancer Immunity and Response to Therapies in Multiple Myeloma. Frontiers in Immunology, 2022, 13, 845422.	4.8	10
3	A novel expressed prostatic secretion (EPS)-urine metabolomic signature for the diagnosis of clinically significant prostate cancer. Cancer Biology and Medicine, 2021, 18, 604-615.	3.0	4
4	Anticancer innovative therapy congress: Highlights from the 10th anniversary edition. Cytokine and Growth Factor Reviews, 2021, 59, 1-8.	7.2	4
5	CD4+ T cells sustain aggressive chronic lymphocytic leukemia in EÎ $\frac{1}{4}$ -TCL1 mice through a CD40L-independent mechanism. Blood Advances, 2021, 5, 2817-2828.	5.2	13
6	Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science, 2021, 374, 216-224.	12.6	135
7	[18F](2S,4R)-4-Fluoroglutamine as a New Positron Emission Tomography Tracer in Myeloma. Frontiers in Oncology, 2021, 11, 760732.	2.8	9
8	P-016: The role [18F]-(2S,4R)-4-Fluoroglutamine as a new positron emission tomography tracer in Myeloma in vivo models Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S47-S48.	0.4	0
9	Development and Validation of [18f](2 <i>S</i> ,4 <i>R</i>)-4-Fluoroglutamine in Multiple Myeloma Mouse Models. Blood, 2021, 138, 2674-2674.	1.4	0
10	Cancer bio-immunotherapy XVII annual NIBIT (Italian Network for Tumor Biotherapy) meeting, October $11\hat{a}$ \in "13 2019, Verona, Italy. Cancer Immunology, Immunotherapy, 2021, , 1.	4.2	0
11	Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Frontiers in Immunology, 2020, 11, 565470.	4.8	63
12	Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis. Frontiers in Immunology, 2020, 11, 1820.	4.8	22
13	Iron Induces Cell Death and Strengthens the Efficacy of Antiandrogen Therapy in Prostate Cancer Models. Clinical Cancer Research, 2020, 26, 6387-6398.	7.0	36
14	ACE polymorphisms and COVID-19-related mortality in Europe. Journal of Molecular Medicine, 2020, 98, 1505-1509.	3.9	32
15	Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	37
16	Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival., 2019, 7, 201.		11
17	Boosting Interleukinâ€12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGRâ€Tagged Nanogold. Small, 2019, 15, e1903462.	10.0	21
18	Crosstalk Between Prostate Cancer Stem Cells and Immune Cells: Implications for Tumor Progression and Resistance to Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 173-221.	0.1	3

#	Article	IF	CITATIONS
19	Homotypic and Heterotypic Activation of the Notch Pathway in Multiple Myeloma–Enhanced Angiogenesis: A Novel Therapeutic Target?. Neoplasia, 2019, 21, 93-105.	5.3	28
20	PD-L1 Expression and CD8+ T-cell Infiltrate are Associated with Clinical Progression in Patients with Node-positive Prostate Cancer. European Urology Focus, 2019, 5, 192-196.	3.1	81
21	PD11-12â€∫DEVELOPMENT AND VALIDATION OF A NOVEL EPS-METABOLOMIC SIGNATURE FOR THE DIAGNOSIS CLINICALLY SIGNIFICANT PROSTATE CANCER Journal of Urology, 2019, 201, .	OF 0.4	O
22	CD4+ T Cells Sustain Aggressive Chronic Lymphocytic Leukemia through a CD40L-Independent Mechanism. Blood, 2019, 134, 683-683.	1.4	0
23	[18f]-(2S,4R)-4-Fluoroglutamine As a New Positron Emission Tomography Tracer in Multiple Myeloma. Blood, 2019, 134, 5542-5542.	1.4	O
24	Interleukin-30/IL27p28 Shapes Prostate Cancer Stem-like Cell Behavior and Is Critical for Tumor Onset and Metastasization. Cancer Research, 2018, 78, 2654-2668.	0.9	35
25	Targeting Tumor Vasculature with TNF Leads Effector T Cells to the Tumor and Enhances Therapeutic Efficacy of Immune Checkpoint Blockers in Combination with Adoptive Cell Therapy. Clinical Cancer Research, 2018, 24, 2171-2181.	7.0	40
26	Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression. Cell Reports, 2018, 22, 3006-3020.	6.4	62
27	Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature Communications, 2018, 9, 4832.	12.8	144
28	Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Prostate Adenocarcinoma and Melanoma. Frontiers in Immunology, 2018, 9, 1786.	4.8	29
29	Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis. Blood, 2017, 129, 3440-3451.	1.4	56
30	Imatinib Spares cKit-Expressing Prostate Neuroendocrine Tumors, whereas Kills Seminal Vesicle Epithelial–Stromal Tumors by Targeting PDGFR-β. Molecular Cancer Therapeutics, 2017, 16, 365-375.	4.1	11
31	Fatty is not that bad: feeding short-chain fatty acids to restrain autoimmunity. Cellular and Molecular Immunology, 2017, 14, 878-880.	10.5	8
32	Goals and objectives of the Italian Network for Tumor Biotherapy (NIBIT). Cytokine and Growth Factor Reviews, 2017, 36, 1-3.	7.2	1
33	Constitutive and acquired mechanisms of resistance to immune checkpoint blockade in human cancer. Cytokine and Growth Factor Reviews, 2017, 36, 17-24.	7.2	23
34	T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Research, 2017, 77, 658-671.	0.9	30
35	Long non-coding RNAs as novel therapeutic targets in cancer. Pharmacological Research, 2016, 110, 131-138.	7.1	71
36	EP-2053: In-vivo imaging of rat leukocytes redistribution after pelvic irradiation. Radiotherapy and Oncology, 2016, 119, S968-S969.	0.6	0

#	Article	IF	Citations
37	Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.9	24
38	Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia, 2016, 30, 1103-1115.	7.2	46
39	"Cancer Bio-Immunotherapy in Siena― Eleventh Meeting of the Network Italiano per la Bioterapia dei Tumori (NIBIT), Siena, Italy, October 17–19, 2013. Cancer Immunology, Immunotherapy, 2015, 64, 131-135.	4.2	0
40	Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncolmmunology, 2015, 4, e1008850.	4.6	27
41	Tenascin-C Protects Cancer Stem–like Cells from Immune Surveillance by Arresting T-cell Activation. Cancer Research, 2015, 75, 2095-2108.	0.9	112
42	Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene, 2015, 34, 2094-2102.	5.9	72
43	Immunosuppression via Tenascin-C. Oncoscience, 2015, 2, 667-668.	2.2	7
44	A pilot Phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma. Oncolmmunology, 2014, 3, e963406.	4.6	23
45	Induction of T-cell memory by a dendritic cell vaccine: a computational model. Bioinformatics, 2014, 30, 1884-1891.	4.1	35
46	Pushing tumor cells towards a malignant phenotype: Stimuli from the microenvironment, intercellular communications and alternative roads. International Journal of Cancer, 2014, 135, 1265-1276.	5.1	51
47	Pre-clinical evaluation of immunotherapy: The case for prostate cancer and the TRAMP model. , 2014, , 173-188.		0
48	Early Trafficking of Bone Marrow Derived-Endothelial Progenitor Cells Promotes Multiple Myeloma Progression. Blood, 2014, 124, 4719-4719.	1.4	0
49	Angiogenesis Associated with Alterations of the Bone Marrow Microenvironment Predicts Multiple Myeloma Progression to Symptomatic Disease in Mice and Humans. Blood, 2014, 124, 5678-5678.	1.4	0
50	Booster Vaccinations against Cancer Are Critical in Prophylactic but Detrimental in Therapeutic Settings. Cancer Research, 2013, 73, 3545-3554.	0.9	17
51	Gene Signatures Distinguish Stage-Specific Prostate Cancer Stem Cells Isolated From Transgenic Adenocarcinoma of the Mouse Prostate Lesions and Predict the Malignancy of Human Tumors. Stem Cells Translational Medicine, 2013, 2, 678-689.	3.3	20
52	Ways to Enhance Lymphocyte Trafficking into Tumors and Fitness of Tumor Infiltrating Lymphocytes. Frontiers in Oncology, 2013, 3, 231.	2.8	132
53	Boosting anticancer vaccines. Oncolmmunology, 2013, 2, e25032.	4.6	6
54	Vaccine-Instructed Intratumoral IFN-Î ³ Enables Regression of Autochthonous Mouse Prostate Cancer in Allogeneic T-Cell Transplantation. Cancer Research, 2013, 73, 4641-4652.	0.9	16

#	Article	IF	CITATIONS
55	Approaches to improve tumor accumulation and interactions between monoclonal antibodies and immune cells. MAbs, 2013, 5, 34-46.	5.2	46
56	Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. Oncolmmunology, 2013, 2, e24520.	4.6	38
57	Tumor-targeting vaccination instructs graft-vstumor immune responses. Oncolmmunology, 2013, 2, e25996.	4.6	3
58	The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncolmmunology, 2013, 2, e22058.	4.6	121
59	Bone Marrow Mobilization Of Endothelial Progenitor Cells Represents An Early Pathogenic Event During Multiple Myeloma Progression. Blood, 2013, 122, 680-680.	1.4	4
60	Abstract A83: Modifications of the bone marrow microenvironment in the transition from monoclonal gammopathy of undetermined significance to multiple myeloma in Vk*MYC mice , 2013, , .		0
61	Abstract 2613: Prostate cancer stem/initiating cells are targets of both innate and adaptive immunity and elicit potent immune responses against autochthonous prostate tumors , 2013, , .		0
62	Won't you come on in? How to favor lymphocyte infiltration in tumors. Oncolmmunology, 2012, 1, 986-988.	4.6	21
63	Modulation of Microenvironment Acidity Reverses Anergy in Human and Murine Tumor-Infiltrating T Lymphocytes. Cancer Research, 2012, 72, 2746-2756.	0.9	470
64	Targeting TNF-α to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy. Journal of Immunology, 2012, 188, 2687-2694.	0.8	128
65	Vitamin D-binding protein-derived macrophage-activating factor, GcMAF, and prostate cancer. Cancer Immunology, Immunotherapy, 2012, 61, 2377-2378.	4.2	1
66	Prostate cancer, tumor immunity and a renewed sense of optimism in immunotherapy. Cancer Immunology, Immunotherapy, 2012, 61, 453-468.	4.2	22
67	Modulators of Arginine Metabolism Do Not Impact on Peripheral T-Cell Tolerance and Disease Progression in a Model of Spontaneous Prostate Cancer. Clinical Cancer Research, 2011, 17, 1012-1023.	7.0	29
68	Concurrent Allorecognition Has a Limited Impact on Posttransplant Vaccination. Journal of Immunology, 2011, 186, 1361-1368.	0.8	6
69	Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. Journal of Neuroimmunology, 2010, 220, 52-63.	2.3	88
70	iNKT Cells Control Mouse Spontaneous Carcinoma Independently of Tumor-Specific Cytotoxic T Cells. PLoS ONE, 2010, 5, e8646.	2.5	61
71	Concomitant Tumor and Minor Histocompatibility Antigen–Specific Immunity Initiate Rejection and Maintain Remission from Established Spontaneous Solid Tumors. Cancer Research, 2010, 70, 3505-3514.	0.9	25
72	Modulators of arginine metabolism support cancer immunosurveillance. BMC Immunology, 2009, 10, 1.	2.2	79

#	Article	IF	Citations
73	Characterization of preclinical models of prostate cancer using PET-based molecular imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1245-1255.	6.4	5
74	Vasculatureâ€ŧargeted tumor necrosis factorâ€alpha increases the therapeutic index of doxorubicin against prostate cancer. Prostate, 2008, 68, 1105-1115.	2.3	47
75	Vascular targeting, chemotherapy and active immunotherapy: teaming up to attack cancer. Trends in Immunology, 2008, 29, 235-241.	6.8	32
76	Critical role of indoleamine 2,3-dioxygenase in tumor resistance to repeated treatments with targeted IFNÂ. Molecular Cancer Therapeutics, 2008, 7, 3859-3866.	4.1	25
77	Peripheral T-Cell Tolerance Associated with Prostate Cancer Is Independent from CD4+CD25+ Regulatory T Cells. Cancer Research, 2008, 68, 292-300.	0.9	59
78	Prolonged exposure of dendritic cells to maturation stimuli favors the induction of type-2 cytotoxic T lymphocytes. European Journal of Immunology, 2006, 36, 3157-3166.	2.9	6
79	Type 2 Cytotoxic T Lymphocytes Modulate the Activity of Dendritic Cells Toward Type 2 Immune Responses. Journal of Immunology, 2006, 177, 2131-2137.	0.8	21
80	Molecular modification of idiotypes from B-cell lymphomas for expression in mature dendritic cells as a strategy to induce tumor-reactive CD4+ and CD8+ T-cell responses. Blood, 2005, 105, 3596-3604.	1.4	15
81	Peripheral T?cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. European Journal of Immunology, 2005, 35, 66-75.	2.9	78
82	The Immunogenicity of Dendritic Cell-Based Vaccines Is Not Hampered by Doxorubicin and Melphalan Administration. Journal of Immunology, 2005, 174, 3317-3325.	0.8	21
83	Nitric Oxide Confers Therapeutic Activity to Dendritic Cells in a Mouse Model of Melanoma. Cancer Research, 2004, 64, 3767-3771.	0.9	48
84	Crucial Role for Interferon \hat{I}^3 in the Synergism between Tumor Vasculature-Targeted Tumor Necrosis Factor $\hat{I}\pm$ (NGR-TNF) and Doxorubicin. Cancer Research, 2004, 64, 7150-7155.	0.9	66
85	Dendritic Cell Activation Kinetics and Cancer Immunotherapy. Journal of Immunology, 2004, 172, 2727.2-2728.	0.8	4
86	Cellular microchimerism as a lifelong physiologic status in parous women: An immunologic basis for its amplification in patients with systemic sclerosis. Arthritis and Rheumatism, 2003, 48, 1109-1116.	6.7	37
87	Critical impact of the kinetics of dendritic cells activation on the in vivo induction of tumor-specific T lymphocytes. Cancer Research, 2003, 63, 3688-94.	0.9	65
88	Autoantibodies against a 72-kDa ductal cell membrane glycoprotein in a patient affected by Sjögren's syndrome and gastric MALT lymphoma. Annals of Hematology, 2002, 81, 597-602.	1.8	5
89	Apoptosis-dependent subversion of the T-lymphocyte epitope hierarchy in lymphoma cells. Cancer Research, 2002, 62, 1116-22.	0.9	14
90	Apoptosis, cross-presentation, and the fate of the antigen specific immune response., 2000, 5, 307-314.		31

#	Article	IF	CITATIONS
91	Relevance of the Tumor Antigen in the Validation of Three Vaccination Strategies for Melanoma. Journal of Immunology, 2000, 165, 2651-2656.	0.8	127
92	Thymoma associated with systemic lupus erythematosus and immunologic abnormalities. Lupus, 2000, 9, 151-154.	1.6	23
93	Melanoma Cells Present a MAGE-3 Epitope to CD4+ Cytotoxic T Cells in Association with Histocompatibility Leukocyte Antigen DR11. Journal of Experimental Medicine, 1999, 189, 871-876.	8.5	204
94	Cancer immunotherapy: synthetic and natural peptides in the balance. Trends in Immunology, 1999, 20, 457-462.	7.5	22
95	Role of antigen-presenting cells in cross-priming of cytotoxic T lymphocytes by apoptotic cells. Journal of Leukocyte Biology, 1999, 66, 247-251.	3.3	28
96	Immunotherapy: natural versus synthetic peptides. Trends in Immunology, 1998, 19, 98.	7. 5	6
97	Human Melanoma Cells Transfected with the B7-2 Co-Stimulatory Molecule Induce Tumor-Specific CD8 ⁺ Cytotoxic T Lymphocytes <i>In Vitro</i> . Human Gene Therapy, 1998, 9, 1335-1344.	2.7	25
98	Heterogeneous effects of B7-1 and B7-2 in the induction of both protective and therapeutic anti-tumor immunity against different mouse tumors. European Journal of Immunology, 1996, 26, 1851-1859.	2.9	52
99	Engineered APCs for tumor immunotherapy. Trends in Immunology, 1996, 17, 198.	7.5	0
100	Co-expression of B7-1 and ICAM-1 on tumors is required for rejection and the establishment of a memory response. European Journal of Immunology, 1995, 25, 1154-1162.	2.9	111
101	Clustering of B and T Epitopes Within Short Sequence Regions of the Nieotinic Acetylcholine Receptor. Scandinavian Journal of Immunology, 1995, 41, 135-140.	2.7	9
102	Mechanisms by which the I-ABM12 Mutation Influences Susceptibility to Experimental Myasthenia Gravis: a Study in Homozygous and Heterozygous Mice. Scandinavian Journal of Immunology, 1995, 42, 215-225.	2.7	31
103	Preferential pairing of T and B cells for production of antibodies without covalent association of T and B epitopes. European Journal of Immunology, 1994, 24, 799-804.	2.9	19
104	In vitro priming of cytotoxic T lymphocytes against poorly immunogenic epitopes by engineered antigen-presenting cells. European Journal of Immunology, 1994, 24, 2691-2698.	2.9	45
105	Constitutive expression of the heat shock protein 72 kDa in human melanoma cells. Cancer Letters, 1994, 85, 211-216.	7.2	29
106	Autoimmunity Against the Nicotinic Acetylcholine Receptor and the Presynaptic Calcium Channel at the Neuromuscular Junction. E&M Endocrinology and Metabolism, 1994, , 151-189.	0.1	0
107	Myasthenia gravis: recognition of a human autoantigen at the molecular level. Trends in Immunology, 1993, 14, 363-368.	7. 5	103
108	T helper function of CD4+ cells specific for defined epitopes on the acetylcholine receptor in congenic mouse strains. Journal of Autoimmunity, 1992, 5, 27-46.	6.5	10

#	Article	IF	CITATION
109	Molecular mimicry among human autoantigens. Trends in Immunology, 1991, 12, 46-47.	7.5	16
110	Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the $\hat{l}\pm$ subunits of Torpedo californica and murine acetylcholine receptors. European Journal of Immunology, 1991, 21, 2303-2310.	2.9	57
111	Impairment of lymphocyte suppressive system in recent onset insulin-dependent diabetes mellitus. correlation with blood glucose and serum insulin levels. Acta Diabetologica Latina, 1989, 26, 257-263.	0.2	1
112	Use of Synthetic Peptides and High Affinity Protein Ligands for Structural Studies of Central and Peripheral Nicotinic Receptors., 1989,, 291-309.		5
113	Cimetidine Treatment in Hyper-IgM Hypogammaglobulinemia. JAMA - Journal of the American Medical Association, 1987, 258, 1892-1892.	7.4	1
114	Dual targeting by TCR-redirected T cells enables remission from autochthonous mouse prostate cancer Frontiers in Immunology, 0, 4, .	4.8	0
115	Modifications of the bone marrow microenvironment in the transition from monoclonal gammopathy of undetermined significance to multiple myeloma in Vk^*MYC mice. Frontiers in Immunology, 0, 4, .	4.8	O