
William C Sessa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide synthases: regulation and function. European Heart Journal, 2012, 33, 829-837.	2.2	3,036
2	Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999, 399, 597-601.	27.8	2,384
3	Evolving functions of endothelial cells in inflammation. Nature Reviews Immunology, 2007, 7, 803-815.	22.7	1,505
4	The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals Nature Medicine, 2000, 6, 1004-1010.	30.7	1,355
5	Biological Action of Leptin as an Angiogenic Factor. Science, 1998, 281, 1683-1686.	12.6	1,209
6	Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells Journal of Clinical Investigation, 1997, 100, 3131-3139.	8.2	1,030
7	Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature, 1998, 392, 821-824.	27.8	964
8	Caveolins, Liquid-Ordered Domains, and Signal Transduction. Molecular and Cellular Biology, 1999, 19, 7289-7304.	2.3	960
9	Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression Circulation Research, 1994, 74, 349-353.	4.5	837
10	Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13176-13181.	7.1	835
11	Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. Journal of Biological Chemistry, 1997, 272, 25437-25440.	3.4	731
12	Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling Journal of Clinical Investigation, 1998, 101, 731-736.	8.2	727
13	Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells. Circulation Research, 2007, 100, 1164-1173.	4.5	656
14	Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6448-6453.	7.1	642
15	Angiopoietin-1 Inhibits Endothelial Cell Apoptosis via the Akt/Survivin Pathway. Journal of Biological Chemistry, 2000, 275, 9102-9105.	3.4	552
16	Membrane Estrogen Receptor Engagement Activates Endothelial Nitric Oxide Synthase via the PI3-Kinase–Akt Pathway in Human Endothelial Cells. Circulation Research, 2000, 87, 677-682.	4.5	522
17	In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Medicine, 2000, 6, 1362-1367.	30.7	519
18	Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature, 1991, 351, 477-479.	27.8	508

#	Article	IF	CITATIONS
19	eNOS at a glance. Journal of Cell Science, 2004, 117, 2427-2429.	2.0	500
20	The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO Journal, 2008, 27, 1932-1943.	7.8	482
21	The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8612-8616.	7.1	480
22	Endothelial Nitric Oxide Synthase Is Regulated by Tyrosine Phosphorylation and Interacts with Caveolin-1. Journal of Biological Chemistry, 1996, 271, 27237-27240.	3.4	468
23	Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14082-14087.	7.1	453
24	The Nitric Oxide Synthase Family of Proteins. Journal of Vascular Research, 1994, 31, 131-143.	1.4	428
25	17β-Estradiol Regulation of Human Endothelial Cell Basal Nitric Oxide Release, Independent of Cytosolic Ca ²⁺ Mobilization. Circulation Research, 1997, 81, 885-892.	4.5	402
26	Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell, 2006, 10, 159-170.	16.8	388
27	Vascular Endothelial Growth Factor–Stimulated Actin Reorganization and Migration of Endothelial Cells Is Regulated via the Serine/Threonine Kinase Akt. Circulation Research, 2000, 86, 892-896.	4.5	386
28	MicroRNAs As Novel Regulators of Angiogenesis. Circulation Research, 2009, 104, 442-454.	4.5	383
29	Native Low-Density Lipoprotein Increases Endothelial Cell Nitric Oxide Synthase Generation of Superoxide Anion. Circulation Research, 1995, 77, 510-518.	4.5	380
30	Enhanced Electron Flux and Reduced Calmodulin Dissociation May Explain "Calcium-independent― eNOS Activation by Phosphorylation. Journal of Biological Chemistry, 2000, 275, 6123-6128.	3.4	344
31	Akt1/protein kinase BÂ is critical for ischemic and VEGF-mediated angiogenesis. Journal of Clinical Investigation, 2005, 115, 2119-2127.	8.2	341
32	Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity Journal of Clinical Investigation, 1994, 93, 2236-2243.	8.2	338
33	Domain Mapping Studies Reveal That the M Domain of hsp90 Serves as a Molecular Scaffold to Regulate Akt-Dependent Phosphorylation of Endothelial Nitric Oxide Synthase and NO Release. Circulation Research, 2002, 90, 866-873.	4.5	325
34	Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. Journal of Clinical Investigation, 2006, 116, 1284-1291.	8.2	318
35	Regulation of survivin function by Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13791-13796.	7.1	311
36	Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology, 1999, 117, 1222-1228.	1.3	307

#	Article	IF	CITATIONS
37	Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids Journal of Clinical Investigation, 1997, 100, 2923-2930.	8.2	295
38	Src Kinase Mediates Phosphatidylinositol 3-Kinase/Akt-dependent Rapid Endothelial Nitric-oxide Synthase Activation by Estrogen. Journal of Biological Chemistry, 2003, 278, 2118-2123.	3.4	292
39	Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells Journal of Clinical Investigation, 1995, 96, 1449-1454.	8.2	291
40	Caveolae and Caveolins in the Cardiovascular System. Circulation Research, 2004, 94, 1408-1417.	4.5	289
41	Heat Shock Protein 90 Mediates the Balance of Nitric Oxide and Superoxide Anion from Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2001, 276, 17621-17624.	3.4	288
42	Akt-Mediated Phosphorylation of the G Protein-Coupled Receptor EDG-1 Is Required for Endothelial Cell Chemotaxis. Molecular Cell, 2001, 8, 693-704.	9.7	286
43	Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10999-11004.	7.1	286
44	Reconstitution of an Endothelial Nitric-oxide Synthase (eNOS), hsp90, and Caveolin-1 Complex in Vitro. Journal of Biological Chemistry, 2000, 275, 22268-22272.	3.4	284
45	Caveolin regulation of endothelial function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1179-L1183.	2.9	262
46	Bacterial infection induces nitric oxide synthase in human neutrophils Journal of Clinical Investigation, 1997, 99, 110-116.	8.2	261
47	Akt Down-regulation of p38 Signaling Provides a Novel Mechanism of Vascular Endothelial Growth Factor-mediated Cytoprotection in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 30359-30365.	3.4	253
48	Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metabolism, 2007, 6, 446-457.	16.2	253
49	Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. Cardiovascular Research, 2010, 86, 219-225.	3.8	251
50	Sphingosine 1-Phosphate Activates Akt, Nitric Oxide Production, and Chemotaxis through a GiProtein/Phosphoinositide 3-Kinase Pathway in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 19672-19677.	3.4	244
51	MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1118-1126.	2.4	238
52	Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell, 2003, 4, 31-39.	16.8	234
53	The Golgi Association of Endothelial Nitric Oxide Synthase Is Necessary for the Efficient Synthesis of Nitric Oxide. Journal of Biological Chemistry, 1995, 270, 17641-17644.	3.4	232
54	Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19777-19782.	7.1	232

#	Article	IF	CITATIONS
55	Palmitoylation of Endothelial Nitric Oxide Synthase Is Necessary for Optimal Stimulated Release of Nitric Oxide: Implications for Caveolae Localizationâ€. Biochemistry, 1996, 35, 13277-13281.	2.5	228
56	Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. Journal of Experimental Medicine, 2007, 204, 2373-2382.	8.5	224
57	A new role for Nogo as a regulator of vascular remodeling. Nature Medicine, 2004, 10, 382-388.	30.7	220
58	Phosphorylation of Threonine 497 in Endothelial Nitric-oxide Synthase Coordinates the Coupling of l-Arginine Metabolism to Efficient Nitric Oxide Production. Journal of Biological Chemistry, 2003, 278, 44719-44726.	3.4	219
59	Reduced Gene Expression of Vascular Endothelial NO Synthase and Cyclooxygenase-1 in Heart Failure. Circulation Research, 1996, 78, 58-64.	4.5	219
60	Compensatory Phosphorylation and Protein-Protein Interactions Revealed by Loss of Function and Gain of Function Mutants of Multiple Serine Phosphorylation Sites in Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2003, 278, 14841-14849.	3.4	214
61	Functional Analysis of the Human Endothelial Nitric Oxide Synthase Promoter. Journal of Biological Chemistry, 1995, 270, 15320-15326.	3.4	212
62	Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14072-14077.	7.1	210
63	Inflammation and the Blood Microvascular System. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016345.	5.5	200
64	The Role of Nogo and the Mitochondria–Endoplasmic Reticulum Unit in Pulmonary Hypertension. Science Translational Medicine, 2011, 3, 88ra55.	12.4	193
65	Localization of Endothelial Nitric-oxide Synthase Phosphorylated on Serine 1179 and Nitric Oxide in Golgi and Plasma Membrane Defines the Existence of Two Pools of Active Enzyme. Journal of Biological Chemistry, 2002, 277, 4277-4284.	3.4	189
66	Acute modulation of endothelial Akt/PKB activity alters nitric oxide–dependent vasomotor activity in vivo. Journal of Clinical Investigation, 2000, 106, 493-499.	8.2	186
67	The biosynthesis of endothelin-1 by human polymorphonuclear leukocytes. Biochemical and Biophysical Research Communications, 1991, 174, 613-618.	2.1	179
68	Suppression of Vascular Endothelial Growth Factor-Mediated Endothelial Cell Protection by Survivin Targeting. American Journal of Pathology, 2001, 158, 1757-1765.	3.8	177
69	Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 761-766.	7.1	177
70	The First 35 Amino Acids and Fatty Acylation Sites Determine the Molecular Targeting of Endothelial Nitric Oxide Synthase into the Golgi Region of Cells: A Green Fluorescent Protein Study. Journal of Cell Biology, 1997, 137, 1525-1535.	5.2	176
71	Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. American Journal of Physiology - Renal Physiology, 2006, 290, G980-G987.	3.4	176
72	Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. Journal of Cell Biology, 2008, 180, 101-112.	5.2	175

#	Article	IF	CITATIONS
73	Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein Circulation Research, 1993, 72, 921-924.	4.5	173
74	Endothelial nitric oxide synthase: the Cinderella of inflammation?. Trends in Pharmacological Sciences, 2003, 24, 91-95.	8.7	167
75	Estrogen Stimulates Heat Shock Protein 90 Binding to Endothelial Nitric Oxide Synthase in Human Vascular Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 5026-5030.	3.4	166
76	Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovascular Research, 1999, 43, 509-520.	3.8	164
77	Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nature Medicine, 2003, 9, 357-362.	30.7	163
78	Lacteal junction zippering protects against diet-induced obesity. Science, 2018, 361, 599-603.	12.6	162
79	Hsp90–Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene, 2005, 24, 3954-3963.	5.9	161
80	Perivascular nitric oxide gradients normalize tumor vasculature. Nature Medicine, 2008, 14, 255-257.	30.7	161
81	Characterization of Bovine Endothelial Nitric Oxide Synthase Expressed inE. coli. Biochemical and Biophysical Research Communications, 1996, 219, 359-365.	2.1	160
82	miRNAs as Modulators of Angiogenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a006643-a006643.	6.2	155
83	Genetic Evidence Supporting a Critical Role of Endothelial Caveolin-1 during the Progression of Atherosclerosis. Cell Metabolism, 2009, 10, 48-54.	16.2	152
84	Characterization of bovine endothelial nitric oxide synthase as a homodimer with down-regulated uncoupled NADPH oxidase activity: tetrahydrobiopterin binding kinetics and role of haem in dimerization. Biochemical Journal, 1997, 323, 159-165.	3.7	151
85	Acidic Hydrolysis as a Mechanism for the Cleavage of the Glu298 → Asp Variant of Human Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2001, 276, 26674-26679.	3.4	151
86	Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 204-209.	7.1	150
87	Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14552-14557.	7.1	147
88	Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. Journal of Cell Biology, 2006, 174, 369-377.	5.2	146
89	The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. Journal of Clinical Investigation, 2007, 117, 1961-1967.	8.2	143
90	VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circulation Research, 2016, 118, 38-47.	4.5	141

#	Article	IF	CITATIONS
91	Endothelial nitric oxide synthase activation is critical for vascular leakage during acute inflammation <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 904-908.	7.1	140
92	CCM3 signaling through sterile 20–like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. Journal of Clinical Investigation, 2010, 120, 2795-2804.	8.2	139
93	PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nature Communications, 2016, 7, 13650.	12.8	136
94	Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L843-L861.	2.9	135
95	Inhibitor of apoptosis protein survivin regulates vascular injury. Nature Medicine, 2002, 8, 987-994.	30.7	134
96	Absence of Akt1 Reduces Vascular Smooth Muscle Cell Migration and Survival and Induces Features of Plaque Vulnerability and Cardiac Dysfunction During Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2033-2040.	2.4	133
97	Genetic Evidence Supporting Caveolae Microdomain Regulation of Calcium Entry in Endothelial Cells. Journal of Biological Chemistry, 2007, 282, 16631-16643.	3.4	132
98	Endothelial-Specific Expression of Mitochondrial Thioredoxin Improves Endothelial Cell Function and Reduces Atherosclerotic Lesions. American Journal of Pathology, 2007, 170, 1108-1120.	3.8	130
99	Caveolin-1–Deficient Mice Have Increased Tumor Microvascular Permeability, Angiogenesis, and Growth. Cancer Research, 2007, 67, 2849-2856.	0.9	129
100	Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10997-11002.	7.1	128
101	Biosynthesis and Palmitoylation of Endothelial Nitric Oxide Synthase: Mutagenesis of Palmitoylation Sites, Cysteines-15 and/or -26, Argues against Depalmitoylation-Induced Translocation of the Enzyme. Biochemistry, 1995, 34, 12333-12340.	2.5	126
102	Endothelial glucocorticoid receptor is required for protection against sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 306-311.	7.1	125
103	Differential Functions of Tumor Necrosis Factor Receptor 1 and 2 Signaling in Ischemia-Mediated Arteriogenesis and Angiogenesis. American Journal of Pathology, 2006, 169, 1886-1898.	3.8	123
104	Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology, 2003, 125, 522-531.	1.3	121
105	Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12865-12870.	7.1	120
106	Targeting of Endothelial Nitric-oxide Synthase to the Cytoplasmic Face of the Golgi Complex or Plasma Membrane Regulates Akt- Versus Calcium-dependent Mechanisms for Nitric Oxide Release. Journal of Biological Chemistry, 2004, 279, 30349-30357.	3.4	119
107	Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function. PLoS ONE, 2011, 6, e18869.	2.5	116
108	Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. American Journal of Physiology - Cell Physiology, 2004, 286, C1195-C1202.	4.6	115

#	Article	IF	CITATIONS
109	Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nature Communications, 2016, 7, 13516.	12.8	115
110	The Sonic Hedgehog Receptor Patched Associates with Caveolin-1 in Cholesterol-rich Microdomains of the Plasma Membrane. Journal of Biological Chemistry, 2001, 276, 19503-19511.	3.4	114
111	eNOS derived nitric oxide regulates endothelial barrier function via VE cadherin and Rho GTPases. Journal of Cell Science, 2013, 126, 5541-52.	2.0	112
112	Functional Reconstitution of Endothelial Nitric Oxide Synthase Reveals the Importance of Serine 1179 in Endothelium-Dependent Vasomotion. Circulation Research, 2002, 90, 904-910.	4.5	110
113	Venous Identity Is Lost but Arterial Identity Is Not Gained During Vein Graft Adaptation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1562-1571.	2.4	110
114	Endothelial NOS: perspective and recent developments. British Journal of Pharmacology, 2019, 176, 189-196.	5.4	110
115	A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. Journal of Clinical Investigation, 2011, 121, 3747-3755.	8.2	105
116	Trafficking of Endothelial Nitric-oxide Synthase in Living Cells. Journal of Biological Chemistry, 1999, 274, 22524-22531.	3.4	104
117	Mutation of Nogo-B Receptor, a Subunit of cis-Prenyltransferase, Causes a Congenital Disorder of Glycosylation. Cell Metabolism, 2014, 20, 448-457.	16.2	104
118	Nogo-B receptor is necessary for cellular dolichol biosynthesis and protein <i>N</i> -glycosylation. EMBO Journal, 2011, 30, 2490-2500.	7.8	102
119	Nitric Oxide in Endothelial Dysfunction and Vascular Remodeling: Clinical Correlates and Experimental Links. American Journal of Human Genetics, 1999, 64, 673-677.	6.2	101
120	Angiopoietinâ€1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB Journal, 2002, 16, 1-24.	0.5	101
121	Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11021-11026.	7.1	101
122	Myoferlin Regulates Vascular Endothelial Growth Factor Receptor-2 Stability and Function. Journal of Biological Chemistry, 2007, 282, 30745-30753.	3.4	100
123	Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation, 2019, 140, 225-239.	1.6	100
124	Endothelial nitric oxide synthase regulates microvascular hyperpermeability <i>in vivo</i> . Journal of Physiology, 2006, 574, 275-281.	2.9	99
125	Direct Interaction between Endothelial Nitric-oxide Synthase and Dynamin-2. Journal of Biological Chemistry, 2001, 276, 14249-14256.	3.4	97
126	The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6511-6516.	7.1	97

#	Article	IF	CITATIONS
127	Lipid Droplet Biogenesis and Function in the Endothelium. Circulation Research, 2017, 120, 1289-1297.	4.5	97
128	Thrombospondin-2 Modulates Extracellular Matrix Remodeling during Physiological Angiogenesis. American Journal of Pathology, 2008, 173, 879-891.	3.8	95
129	Caveolin-1 Can Regulate Vascular Smooth Muscle Cell Fate by Switching Platelet-Derived Growth Factor Signaling From a Proliferative to an Apoptotic Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1521-1527.	2.4	94
130	Chaperone-dependent Regulation of Endothelial Nitric-oxide Synthase Intracellular Trafficking by the Co-chaperone/Ubiquitin Ligase CHIP. Journal of Biological Chemistry, 2003, 278, 49332-49341.	3.4	94
131	Inhibition of MicroRNA-29 Enhances Elastin Levels in Cells Haploinsufficient for Elastin and in Bioengineered Vessels—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 756-759.	2.4	94
132	Endothelial Nitric Oxide Synthase Regulates Microlymphatic Flow via Collecting Lymphatics. Circulation Research, 2004, 95, 204-209.	4.5	91
133	Endothelial-Specific Overexpression of Caveolin-1 Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice. American Journal of Pathology, 2010, 177, 998-1003.	3.8	91
134	T cell–mediated vascular dysfunction of human allografts results from IFN-γ dysregulation of NO synthase. Journal of Clinical Investigation, 2004, 114, 846-856.	8.2	90
135	Regulation of endothelial derived nitric oxide in health and disease. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 15-18.	1.6	90
136	ATP-Binding Cassette Transporter G1 and High-Density Lipoprotein Promote Endothelial NO Synthesis Through a Decrease in the Interaction of Caveolin-1 and Endothelial NO Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2219-2225.	2.4	89
137	Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2018, 5, 130.	2.4	88
138	SMAD4 Prevents Flow Induced Arteriovenous Malformations by Inhibiting Casein Kinase 2. Circulation, 2018, 138, 2379-2394.	1.6	88
139	Functional Relevance of Golgi- and Plasma Membrane-Localized Endothelial NO Synthase in Reconstituted Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1015-1021.	2.4	87
140	Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1167-H1177.	3.2	86
141	Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase. Free Radical Biology and Medicine, 2003, 35, 729-741.	2.9	86
142	Role of prostaglandin D ₂ receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20009-20014.	7.1	86
143	Induction of Nitric Oxide Synthase mRNA by Shear Stress Requires Intracellular Calcium and G-protein Signals and Is Modulated by PI 3 Kinase. Biochemical and Biophysical Research Communications, 1999, 254, 231-242.	2.1	85
144	PKCα Activates eNOS and Increases Arterial Blood Flow In Vivo. Circulation Research, 2005, 97, 482-487.	4.5	85

#	Article	IF	CITATIONS
145	Vasomotor control in arterioles of the mouse cremaster muscle. FASEB Journal, 2000, 14, 197-207.	0.5	84
146	The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo. Science Signaling, 2009, 2, ra41.	3.6	84
147	Simvastatin upregulates coronary vascular endothelial nitric oxide production in conscious dogs. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2649-H2657.	3.2	82
148	The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. Journal of Cellular Physiology, 2007, 211, 197-204.	4.1	82
149	Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17511-17516.	7.1	82
150	Molecular control of blood flow and angiogenesis: role of nitric oxide. Journal of Thrombosis and Haemostasis, 2009, 7, 35-37.	3.8	82
151	Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology, 2003, 125, 1452-1461.	1.3	79
152	Angiopoietin-2 Secretion by Endothelial Cell Exosomes. Journal of Biological Chemistry, 2014, 289, 510-519.	3.4	79
153	Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS. American Journal of Physiology - Cell Physiology, 2005, 289, C1024-C1033.	4.6	78
154	Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a. Biochemical and Biophysical Research Communications, 2013, 437, 368-373.	2.1	78
155	Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. American Journal of Physiology - Renal Physiology, 2002, 283, G1074-G1081.	3.4	77
156	NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. American Journal of Physiology - Renal Physiology, 1999, 276, G1043-G1051.	3.4	76
157	Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2084-H2090.	3.2	75
158	Variant estrogen receptor–c-Src molecular interdependence and c-Src structural requirements for endothelial NO synthase activation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16468-16473.	7.1	75
159	Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1510-1522.	2.4	75
160	AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice. Journal of Clinical Investigation, 2008, 118, 3904-3916.	8.2	75
161	Myoferlin is critical for endocytosis in endothelial cells. American Journal of Physiology - Cell Physiology, 2009, 297, C484-C492.	4.6	74
162	Substrate Binding and Calmodulin Binding to Endothelial Nitric Oxide Synthase Coregulate Its Enzymatic Activity. Nitric Oxide - Biology and Chemistry, 1997, 1, 74-87.	2.7	73

#	Article	IF	CITATIONS
163	Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. American Journal of Physiology - Renal Physiology, 1999, 277, G463-G468.	3.4	73
164	There's NO binding like NOS binding: Protein-protein interactions in NO/cGMP signaling. Proceedings of the United States of America, 2002, 99, 16510-16512.	7.1	73
165	Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?. Physiological Genomics, 2011, 43, 529-533.	2.3	73
166	Critical function of Bmx/Etk in ischemia-mediated arteriogenesis and angiogenesis. Journal of Clinical Investigation, 2006, 116, 2344-55.	8.2	73
167	NO triggers RGS4 degradation to coordinate angiogenesis and cardiomyocyte growth. Journal of Clinical Investigation, 2013, 123, 1718-1731.	8.2	72
168	Nogo-B Receptor Stabilizes Niemann-Pick Type C2 Protein and Regulates Intracellular Cholesterol Trafficking. Cell Metabolism, 2009, 10, 208-218.	16.2	68
169	Contemporary Approaches to Modulating the Nitric Oxide–cGMP Pathway in Cardiovascular Disease. Circulation Research, 2017, 120, 1174-1182.	4.5	68
170	Chronic treatment with nitric oxide-releasing aspirin reduces plasma low-density lipoprotein oxidation and oxidative stress, arterial oxidation-specific epitopes, and atherogenesis in hypercholesterolemic mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12467-12470.	7.1	67
171	cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases. Journal of Biological Chemistry, 2016, 291, 18582-18590.	3.4	66
172	Caveolae: The FAQs. Traffic, 2020, 21, 181-185.	2.7	65
173	Geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) mediated signal transduction has anti-inflammatory effects and interacts with glucocorticoid receptor in vivo. British Journal of Pharmacology, 2000, 131, 13-16.	5.4	64
174	Interferonâ€Î³ plays a nonredundant role in mediating Tâ€cell―dependent outward vascular remodeling of allogeneic human coronary arteries. FASEB Journal, 2004, 18, 606-608.	0.5	64
175	Sin1-mTORC2 Suppresses rag and il7r Gene Expression through Akt2 in B Cells. Molecular Cell, 2010, 39, 433-443.	9.7	64
176	20-Hydroxyeicosatetraenoic acid is an endothelium-dependent vasoconstrictor in rabbit arteries. European Journal of Pharmacology, 1993, 235, 1-7.	3.5	62
177	Endothelial nitric oxide synthase controls the expression of the angiogenesis inhibitor thrombospondin 2. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1137-45.	7.1	62
178	Endothelial Cell Palmitoylproteomic Identifies Novel Lipid-Modified Targets and Potential Substrates for Protein Acyl Transferases. Circulation Research, 2012, 110, 1336-1344.	4.5	62
179	Reticulon 4 Is Necessary for Endoplasmic Reticulum Tubulation, STIM1-Orai1 Coupling, and Store-operated Calcium Entry. Journal of Biological Chemistry, 2014, 289, 9380-9395.	3.4	62
180	Endothelial miR-17â^¼92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12812-12817.	7.1	61

#	Article	IF	CITATIONS
181	Chronic miRâ€29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Molecular Medicine, 2016, 8, 643-653.	6.9	61
182	Temporal Events Underlying Arterial Remodeling After Chronic Flow Reduction in Mice. Circulation Research, 2000, 86, 1160-1166.	4.5	60
183	Myocardial Salvage Induced by REV-5901. Journal of Cardiovascular Pharmacology, 1987, 10, 398-406.	1.9	59
184	MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries. Journal of Experimental Medicine, 2008, 205, 3159-3171.	8.5	59
185	A vascular bed–specific pathway regulates cardiac expression of endothelial nitric oxide synthase. Journal of Clinical Investigation, 1999, 103, 799-805.	8.2	57
186	Coordinated regulation of endothelial nitric oxide synthase activity by phosphorylation and subcellular localization. Free Radical Biology and Medicine, 2006, 41, 144-153.	2.9	56
187	Diabetic Mouse Angiopathy Is Linked to Progressive Sympathetic Receptor Deletion Coupled to an Enhanced Caveolin-1 Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 721-726.	2.4	55
188	Dominant-Negative Hsp90 Reduces VEGF-Stimulated Nitric Oxide Release and Migration in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 105-111.	2.4	55
189	Defective Flow-Migration Coupling Causes Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia. Circulation, 2021, 144, 805-822.	1.6	55
190	Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin–stimulated, cAMP-mediated lipolysis. Journal of Biological Chemistry, 2018, 293, 973-983.	3.4	55
191	An engineered VEGFâ€activating zinc finger protein transcription factor improves blood flow and limb salvage in advancedâ€age mice. FASEB Journal, 2006, 20, 479-481.	0.5	53
192	Eph-B4 prevents venous adaptive remodeling in the adult arterial environment. Journal of Experimental Medicine, 2011, 208, 561-575.	8.5	53
193	Deficient eNOS Phosphorylation Is a Mechanism for Diabetic Vascular Dysfunction Contributing to Increased Stroke Size. Stroke, 2013, 44, 3183-3188.	2.0	53
194	Reticulon 4B (Nogo-B) is a novel regulator of hepatic fibrosis. Hepatology, 2011, 53, 1306-1315.	7.3	52
195	Interaction between the 90-kDa Heat Shock Protein and Soluble Guanylyl Cyclase: Physiological Significance and Mapping of the Domains Mediating Binding. Molecular Pharmacology, 2005, 68, 1133-1141.	2.3	50
196	Endothelial reticulon-4B (Nogo-B) regulates ICAM-1–mediated leukocyte transmigration and acute inflammation. Blood, 2011, 117, 2284-2295.	1.4	50
197	CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues. Journal of Biological Chemistry, 2018, 293, 9126-9136.	3.4	50
198	Endothelial Caveolin-1 Regulates Pathologic Angiogenesis in a Mouse Model of Colitis. Gastroenterology, 2009, 136, 575-584.e2.	1.3	49

#	Article	IF	CITATIONS
199	Native low-density lipoprotein induces endothelial nitric oxide synthase dysfunction: role of heat shock protein 90 and caveolin-1. Free Radical Biology and Medicine, 2002, 33, 52-62.	2.9	48
200	Vanadate Is a Potent Activator of Endothelial Nitric-Oxide Synthase: Evidence for the Role of the Serine/Threonine Kinase Akt and the 90-kDa Heat Shock Protein. Molecular Pharmacology, 2004, 65, 407-415.	2.3	48
201	Suppression of eNOS-derived superoxide by caveolin-1: a biopterin-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H903-H911.	3.2	48
202	Antiangiogenic therapy. Cancer Cell, 2004, 6, 529-531.	16.8	47
203	Heat shock protein 90 and tyrosine kinase regulate eNOS NO· generation but not NO· bioactivity. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H561-H569.	3.2	47
204	Macrophage β2 Integrin–Mediated, HuR-Dependent Stabilization of Angiogenic Factor–Encoding mRNAs in Inflammatory Angiogenesis. American Journal of Pathology, 2012, 180, 1751-1760.	3.8	47
205	Distinct Roles of Endothelial and Adipocyte Caveolin-1 in Macrophage Infiltration and Adipose Tissue Metabolic Activity. Diabetes, 2011, 60, 448-453.	0.6	45
206	IL-13 receptor α ₂ -arginase 2 pathway mediates IL-13-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L112-L124.	2.9	45
207	Ceramide-Activated Phosphatase Mediates Fatty Acid–Induced Endothelial VEGF Resistance and Impaired Angiogenesis. American Journal of Pathology, 2014, 184, 1562-1576.	3.8	41
208	Progressive myoclonus epilepsies—Residual unsolved cases have marked genetic heterogeneity including dolichol-dependent protein glycosylation pathway genes. American Journal of Human Genetics, 2021, 108, 722-738.	6.2	41
209	L-Glutamine inhibits the release of endothelium-derived relaxing factor from the rabbit aorta. Biochemical and Biophysical Research Communications, 1990, 172, 143-148.	2.1	39
210	Quantitative Proteomics of Caveolin-1-regulated Proteins. Molecular and Cellular Proteomics, 2010, 9, 2109-2124.	3.8	39
211	Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation. Journal of Experimental Medicine, 2010, 207, 2595-2607.	8.5	39
212	Rapamycin Inhibits Smooth Muscle Cell Proliferation and Obstructive Arteriopathy Attributable to Elastin Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1028-1035.	2.4	39
213	Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition. Science Signaling, 2015, 8, ra44.	3.6	39
214	A conserved C-terminal RXG motif in the NgBR subunit of cis-prenyltransferase is critical for prenyltransferase activity. Journal of Biological Chemistry, 2017, 292, 17351-17361.	3.4	39
215	Inhibition by <scp>l</scp> â€glutamine of the release of endotheliumâ€derived relaxing factor from cultured endothelial cells. British Journal of Pharmacology, 1990, 101, 237-239.	5.4	38
216	Low Levels of Nogo-B in Human Carotid Atherosclerotic Plaques Are Associated With an Atheromatous Phenotype, Restenosis, and Stenosis Severity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1354-1360.	2.4	38

#	Article	IF	CITATIONS
217	In Vivo Modulation of Nogo-B Attenuates Neointima Formation. Molecular Therapy, 2008, 16, 1798-1804.	8.2	37
218	Caveolae, Fenestrae and Transendothelial Channels Retain PV1 on the Surface of Endothelial Cells. PLoS ONE, 2012, 7, e32655.	2.5	37
219	Serial Noninvasive Targeted Imaging of Peripheral Angiogenesis: Validation and Application of a Semiautomated Quantitative Approach. Journal of Nuclear Medicine, 2009, 50, 1356-1363.	5.0	36
220	Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development (Cambridge), 2014, 141, 1465-1472.	2.5	36
221	Caveolin-1 Influences Vascular Protease Activity and Is a Potential Stabilizing Factor in Human Atherosclerotic Disease. PLoS ONE, 2008, 3, e2612.	2.5	36
222	Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. FASEB Journal, 2015, 29, 597-610.	0.5	35
223	Ng <scp>BR</scp> is essential for endothelial cell glycosylation and vascular development. EMBO Reports, 2016, 17, 167-177.	4.5	35
224	Release of a neutrophilâ€derived vascoconstrictor agent which augments plateletâ€induced contractions of blood vessels <i>in vitro</i> . British Journal of Pharmacology, 1990, 99, 553-559.	5.4	34
225	Can modulation of endothelial nitric oxide synthase explain the vasculoprotective actions of statins?. Trends in Molecular Medicine, 2001, 7, 189-191.	6.7	34
226	eNOS phosphorylation on serine 1176 affects insulin sensitivity and adiposity. Biochemical and Biophysical Research Communications, 2013, 431, 284-290.	2.1	34
227	Endothelial Cell Autonomous Role of Akt1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 870-879.	2.4	34
228	Nitric oxide synthase induction with renal transplant rejection or infection. Kidney International, 1996, 50, 2088-2093.	5.2	33
229	Vascular Endothelial Growth Factor Signaling to Endothelial Nitric Oxide Synthase. Circulation Research, 2006, 99, 666-668.	4.5	33
230	Endothelium Derived Nitric Oxide Synthase Negatively Regulates the PDGF-Survivin Pathway during Flow-Dependent Vascular Remodeling. PLoS ONE, 2012, 7, e31495.	2.5	33
231	Smooth Muscle Hypoxia-Inducible Factor 1α Links Intravascular Pressure and Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 442-445.	2.4	33
232	Thrombospondin-2 regulates extracellular matrix production, LOX levels, and cross-linking via downregulation of miR-29. Matrix Biology, 2019, 82, 71-85.	3.6	33
233	Lymphangiogenic therapy prevents cardiac dysfunction by ameliorating inflammation and hypertension. ELife, 2020, 9, .	6.0	33
234	Eph-B4 regulates adaptive venous remodeling to improve arteriovenous fistula patency. Scientific Reports, 2017, 7, 15386.	3.3	32

#	Article	IF	CITATIONS
235	The N-glycome regulates the endothelial-to-hematopoietic transition. Science, 2020, 370, 1186-1191.	12.6	32
236	Endothelial cell–glucocorticoid receptor interactions and regulation of Wnt signaling. JCI Insight, 2020, 5, .	5.0	32
237	Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis. Circulation Research, 2015, 116, 1744-1752.	4.5	31
238	Alcohol-induced Hsp90 acetylation is a novel driver of liver sinusoidal endothelial dysfunction and alcohol-related liver disease. Journal of Hepatology, 2021, 75, 377-386.	3.7	31
239	Nitric Oxide–Releasing Aspirin Decreases Vascular Injury by Reducing Inflammation and Promoting Apoptosis. Laboratory Investigation, 2002, 82, 825-832.	3.7	30
240	Critical role of caveolin-1 in ocular neovascularization and multitargeted antiangiogenic effects of cavtratin via JNK. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10737-10742.	7.1	30
241	Structural elucidation of the <i>cis</i> -prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20794-20802.	7.1	30
242	Hypoxia-Inducible Factor-1α in Vascular Smooth Muscle Regulates Blood Pressure Homeostasis Through a Peroxisome Proliferator–Activated Receptor-γ–Angiotensin II Receptor Type 1 Axis. Hypertension, 2013, 62, 634-640.	2.7	29
243	Histamine inhibits conducted vasodilation through endotheliumâ€derived NO production in arterioles of mouse skeletal muscle. FASEB Journal, 2004, 18, 280-286.	0.5	28
244	Endothelial Glucocorticoid Receptor Suppresses Atherogenesis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 779-782.	2.4	28
245	Mast cell–derived prostaglandin D 2 attenuates anaphylactic reactions in mice. Journal of Allergy and Clinical Immunology, 2017, 140, 630-632.e9.	2.9	28
246	Histone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity. Circulation, 2022, 145, 1720-1737.	1.6	27
247	Serine 23 and 36 Phosphorylation of Caveolin-2 Is Differentially Regulated by Targeting to Lipid Raft/Caveolae and in Mitotic Endothelial Cells. Biochemistry, 2008, 47, 101-111.	2.5	26
248	HIF-1α represses the expression of the angiogenesis inhibitor thrombospondin-2. Matrix Biology, 2018, 65, 45-58.	3.6	26
249	Cytochrome P450-Dependent Arachidonic Acid Metabolites, 19â^' and 20-Hydroxyeicosatetraenoic Acids, Enhance Sodium-Potassium ATPase Activity in Vascular Smooth Muscle. Journal of Cardiovascular Pharmacology, 1990, 16, 438-443.	1.9	25
250	Reperfusion Injury Intensifies the Adaptive Human T Cell Alloresponse in a Human-Mouse Chimeric Artery Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 353-360.	2.4	25
251	Proteomic Identification of S-Nitrosylated Golgi Proteins: New Insights into Endothelial Cell Regulation by eNOS-Derived NO. PLoS ONE, 2012, 7, e31564.	2.5	25
252	BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. Journal of Biological Chemistry, 2020, 295, 18179-18188.	3.4	25

#	Article	IF	CITATIONS
253	Role of endothelial-derived nitric oxide in hypertension and renal disease. Current Opinion in Nephrology and Hypertension, 2007, 16, 105-110.	2.0	24
254	Uncoupling Caveolae From Intracellular Signaling In Vivo. Circulation Research, 2016, 118, 48-55.	4.5	24
255	eNOS-induced vascular barrier disruption in retinopathy by c-Src activation and tyrosine phosphorylation of VE-cadherin. ELife, 2021, 10, .	6.0	24
256	Manipulation of cytochrome P-450 dependent renal thromboxane synthase activity in spontaneously hypertensive rats. Journal of Hypertension, 1989, 7, 37-42.	0.5	22
257	Human Polymorphonuclear Leukocytes Generate and Degrade Endothelin-1 by Two Distinct Neutral Proteases. Journal of Cardiovascular Pharmacology, 1991, 17, S34-38.	1.9	22
258	Evidence supporting changes in Nogo-B levels as a marker of neointimal expansion but not adaptive arterial remodeling. Vascular Pharmacology, 2007, 46, 293-301.	2.1	22
259	A randomized trial to assess the pharmacodynamics and pharmacokinetics of a single dose of an extended-release aspirin formulation. Postgraduate Medicine, 2015, 127, 573-580.	2.0	22
260	Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2311-2321.	2.4	22
261	Bayesian Analysis of iTRAQ Data with Nonrandom Missingness: Identification of Differentially Expressed Proteins. Statistics in Biosciences, 2009, 1, 228-245.	1.2	21
262	Abolition of arteriolar dilation but not constriction to histamine in cremaster muscle of eNOS [–] [/] [–] mice. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H493-H498.	3.2	20
263	Effective treatment of vascular endothelial growth factor refractory hindlimb ischemia by a mutant endothelial nitric oxide synthase gene. Gene Therapy, 2006, 13, 1342-1350.	4.5	20
264	The Nogo-B-PirB Axis Controls Macrophage-Mediated Vascular Remodeling. PLoS ONE, 2013, 8, e81019.	2.5	20
265	Expression and Function of Recombinant S1179D Endothelial Nitric Oxide Synthase in Canine Cerebral Arteries. Stroke, 2002, 33, 1071-1076.	2.0	19
266	Telmisartan Exerts Pleiotropic Effects in Endothelial Cells and Promotes Endothelial Cell Quiescence and Survival. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1852-1860.	2.4	18
267	The Protein Acyl Transferase ZDHHC21 Modulates α1 Adrenergic Receptor Function and Regulates Hemodynamics. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 370-379.	2.4	18
268	Long-Chain Polyprenols Promote Spore Wall Formation in <i>Saccharomyces cerevisiae</i> . Genetics, 2017, 207, 1371-1386.	2.9	18
269	Targeting the vasculature in cardiometabolic disease. Journal of Clinical Investigation, 2022, 132, .	8.2	18
270	Identification and Regulation of Reticulon 4B (Nogo-B) in Renal Tubular Epithelial Cells. American Journal of Pathology, 2010, 177, 2765-2773.	3.8	17

#	Article	IF	CITATIONS
271	Loss of the Endothelial Glucocorticoid Receptor Prevents the Therapeutic Protection Afforded by Dexamethasone after LPS. PLoS ONE, 2014, 9, e108126.	2.5	17
272	Gene Transduction of an Active Mutant of Akt Exerts Cytoprotection and Reduces Graft Injury After Liver Transplantation. American Journal of Transplantation, 2007, 7, 769-778.	4.7	16
273	Integrase-Deficient Lentiviral Vectors Mediate Efficient Gene Transfer to Human Vascular Smooth Muscle Cells with Minimal Genotoxic Risk. Human Gene Therapy, 2012, 23, 1247-1257.	2.7	16
274	Stimulation of Caveolin-1 Signaling Improves Arteriovenous Fistula Patency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 754-764.	2.4	16
275	Unbiased proteomics identifies plasminogen activator inhibitor-1 as a negative regulator of endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9497-9507.	7.1	16
276	Vascular endothelium summary statement I: Health promotion and chronic disease prevention. Vascular Pharmacology, 2007, 46, 315-317.	2.1	15
277	<i>De novo DHDDS</i> variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain, 2022, 145, 208-223.	7.6	15
278	Quantification of eNOS mRNA in the canine cardiac vasculature by competitive PCR. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H658-H665.	3.2	14
279	Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function. Journal of Biological Chemistry, 2015, 290, 409-422.	3.4	14
280	Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation. Science Signaling, 2015, 8, ra81.	3.6	14
281	Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. Journal of Clinical Investigation, 2021, 131, .	8.2	14
282	Depressor effect of diabetes in spontaneously hypertensive rat: Role of vascular reactivity and prolyl hydroxylase and lysyl oxidase activities. Life Sciences, 1985, 37, 2237-2247.	4.3	12
283	NFBD1/MDC1 Regulates Cav1 and Cav2 Independently of DNA Damage and p53. Molecular Cancer Research, 2011, 9, 766-781.	3.4	11
284	Expression and Function of Recombinant S1179D Endothelial NO Synthase in Human Pial Arteries. Stroke, 2005, 36, 158-160.	2.0	10
285	Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice. Laboratory Investigation, 2010, 90, 1573-1581.	3.7	10
286	Are the Mechanisms for NO-Dependent Vascular Remodeling Different From Vasorelaxation In Vivo?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1207-1208.	2.4	9
287	Engineered Zinc-Finger Proteins Can Compensate Genetic Haploinsufficiency by Transcriptional Activation of the Wild-Type Allele: Application to Willams-Beuren Syndrome and Supravalvular Aortic Stenosis. Human Gene Therapy, 2012, 23, 1186-1199.	2.7	9
288	<i>Akt1</i> Controls the Timing and Amplitude of Vascular Circadian Gene Expression. Journal of Biological Rhythms, 2017, 32, 212-221.	2.6	9

#	Article	IF	CITATIONS
289	Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Journal of Cell Science, 2014, 127, e1-e1.	2.0	9
290	A New Way to Lower Blood Pressure: Pass the Chili Peppers Please!. Cell Metabolism, 2010, 12, 109-110.	16.2	8
291	eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. Journal of Cell Science, 2014, 127, 2120-2120.	2.0	8
292	Differential regulation of cell functions by CSD peptide subdomains. Respiratory Research, 2013, 14, 90.	3.6	7
293	Estrogen Reduces LDL (Low-Density Lipoprotein) Transcytosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2276-2277.	2.4	7
294	Pazopanib ameliorates acute lung injuries via inhibition of MAP3K2 and MAP3K3. Science Translational Medicine, 2021, 13, .	12.4	7
295	The Biosynthesis of Endothelium-Derived Relaxing Factor by Endothelial Cells as a Means of Removing Excess Nitrogen. Journal of Cardiovascular Pharmacology, 1991, 17, S19-S24.	1.9	6
296	Spotlight on mechanisms of vascular inflammation. Cardiovascular Research, 2010, 86, 171-173.	3.8	6
297	MicroRNA Regulation of Cardiovascular Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2369-2369.	2.4	5
298	A New Approach to Weight Loss. Circulation Research, 2012, 111, 1111-1112.	4.5	5
299	The loss of DHX15 impairs endothelial energy metabolism, lymphatic drainage and tumor metastasis in mice. Communications Biology, 2021, 4, 1192.	4.4	5
300	Nitric oxide synthase inhibition and cancer. Lancet Oncology, The, 2007, 8, 88-89.	10.7	4
301	Enhanced eNOS Activation as the Fountain of Youth for Vascular Disease. Circulation Research, 2015, 117, 309-310.	4.5	4
302	Adeno-associated virus mediated gene delivery into coronary microvessels of chronically instrumented dogs. Journal of Applied Physiology, 2003, 95, 1688-1694.	2.5	3
303	Shear Stress Attenuates Inward Remodeling in Cultured Mouse Thoracodorsal Arteries in an eNOS-Dependent, but Not Hemodynamic Manner, and Increases Cx37 Expression. Journal of Vascular Research, 2019, 56, 284-295.	1.4	3
304	Characterization of a Novel Caveolin Modulator That Reduces Vascular Permeability and Ocular Inflammation. Translational Vision Science and Technology, 2021, 10, 21.	2.2	3
305	Molecular Control of Endothelial Derived Nitric Oxide. , 2000, , 157-166.		3
306	Atheroprotection in the Absence of "Caves― Is it the Fat, the Vessels, or Both?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 4-6.	2.4	2

#	Article	IF	CITATIONS
307	Chapter 1 Approaches for Studying Angiogenesisâ€Related Signal Transduction. Methods in Enzymology, 2008, 443, 1-23.	1.0	2
308	Stz-Induced Diabetes in Shr and Renovascular Hypertensive Rats: Dissociation Between Changes in Arterial Pressure and Vascular Collagen Synthesis. Clinical and Experimental Hypertension, 1990, 12, 1003-1019.	0.3	1
309	Regulation of the NOS Gene Family. , 1997, , 66-85.		1
310	Endothelial-derived nitric oxide as a marker for healthy endothelium. , 2004, , 19-23.		1
311	Transcriptional Control of Endothelial Nitric Oxide Synthase Gene Expression. Methods in Neurosciences, 1996, 31, 197-206.	0.5	0
312	Site-Directed Mutagenesis to Probe Endothelial Nitric Oxide Synthase Posttranslational Modifications. Methods in Neurosciences, 1996, , 207-212.	0.5	0
313	Nitric Oxide as an Autocrine and Paracrine Regulator of Vessel Function. , 0, , 988-993.		Ο
314	PS224. Nogo-B Protein Modulates Intimal Thickening During Vein Graft Adaptation. Journal of Vascular Surgery, 2010, 51, 77S.	1.1	0
315	A Vectorial, ER-Mitochondria Link to Energy Homeostasis in the Vascular Endothelium. Cell Metabolism, 2020, 32, 150-152.	16.2	0
316	Dynamic Protein Palmitoylation Cycling. Circulation Research, 2020, 127, 266-268.	4.5	0
317	Regulation of Caveolinâ€⊋ Phosphorylation at Serines 23 and 36. FASEB Journal, 2007, 21, A1424.	0.5	0
318	Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. Journal of Cell Biology, 2007, 179, i1-i1.	5.2	0
319	Nogoâ€B limits intimaâ€media thickening during mouse vein graft adaptation. FASEB Journal, 2008, 22, 174.4.	0.5	0
320	Is the eukaryotic cisâ€prenyltransferase a heteromer? The role of NgBR and its yeast ortholog Nus1 in protein glycosylation. FASEB Journal, 2012, 26, 787.5.	0.5	0
321	NogoB receptor is essential for extraembryonic vascular development and protein glycosylation. FASEB Journal, 2012, 26, 607.5.	0.5	0
322	Characterization of Lipid Droplet and Its Regulation by Caveolinâ€1 in Endothelial Cells. FASEB Journal, 2012, 26, 597.1.	0.5	0
323	Nitric Oxide Synthase Biology: Insights Gained from â€ [~] Knockout' Mice. , 1999, , 96-110.		0
324	Abstract 17179: Blunted Vasoreactivity and Loss of Flow Reserve Contribute to Impaired Arteriogenesis in Diabetic Peripheral Artery Disease. Circulation, 2018, 138, .	1.6	0