Yeoung-Sang Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3632899/publications.pdf Version: 2024-02-01

		17440	16650
235	17,166	63	123
papers	citations	h-index	g-index
238	238	238	15463
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of quaternized polyethylenimine-cellulose fibers for fast recovery of Au(CN)2- in alkaline wastewater: Kinetics, isotherm, and thermodynamic study. Journal of Hazardous Materials, 2022, 422, 126940.	12.4	15
2	Organic acid-based linear free energy relationship models for green leaching of strategic metals from spent lithium-ion batteries and improvement of leaching performance. Journal of Hazardous Materials, 2022, 423, 127214.	12.4	19
3	Simple, green organic acid-based hydrometallurgy for waste-to-energy storage devices: Recovery of NiMnCoC2O4 as an electrode material for pseudocapacitor from spent LiNiMnCoO2 batteries. Journal of Hazardous Materials, 2022, 424, 127481.	12.4	24
4	Adsorption modeling of microcrystalline cellulose for pharmaceutical-based micropollutants. Journal of Hazardous Materials, 2022, 426, 128087.	12.4	17
5	Facile Processing of Polyelectrolyte Complexes for Immobilization of Heavy Metal Ions in Wastewater. ACS Applied Polymer Materials, 2022, 4, 2346-2354.	4.4	13
6	In silico prediction and analysis of dielectric constant of ionic liquids. Korean Journal of Chemical Engineering, 2022, 39, 1651-1657.	2.7	1
7	Strategies for recovery of copper and gold as single constituents or an alloy: Selective separation and adsorption-coupled incineration of the bulk metal-loaded adsorbents. Resources, Conservation and Recycling, 2022, 181, 106264.	10.8	6
8	Polyethyleneimine functionalized alginate composite fiber for fast recovery of gold from acidic aqueous solutions. Environmental Technology and Innovation, 2022, 28, 102605.	6.1	13
9	Synthesis and environmental applications of graphene oxide/layered double hydroxides and graphene oxide/MXenes: A critical review. Separation and Purification Technology, 2022, 297, 121518.	7.9	11
10	Self-coagulating polyelectrolyte complexes for target-tunable adsorption and separation of metal ions. Journal of Hazardous Materials, 2021, 401, 123352.	12.4	28
11	Prediction of organic pollutant removal using Corynebacterium glutamicum fermentation waste. Environmental Research, 2021, 192, 110271.	7.5	9
12	In-situ microwave-assisted leaching and selective separation of Au(III) from waste printed circuit boards in biphasic aqua regia-ionic liquid systems. Separation and Purification Technology, 2021, 255, 117649.	7.9	17
13	Selection of low-toxic and highly efficient ionic liquids for the separation of palladium and platinum in acidic solution, and prediction of the metal affinity of ionic liquids. Separation and Purification Technology, 2021, 258, 118019.	7.9	7
14	Development of melamine-impregnated alginate capsule for selective recovery of Pd(II) from a binary metal solution. Journal of Cleaner Production, 2021, 288, 125648.	9.3	12
15	Pd(II)-Imprinted Chitosan Adsorbent for Selective Adsorption of Pd(II): Optimizing the Imprinting Process through Box–Behnken Experimental Design. ACS Omega, 2021, 6, 13057-13065.	3.5	14
16	Role of Adsorptive Concentration in Fenton‣ike Degradation of Organic Pollutants by Biopolymeric FeOOH/Graphene Oxide Composite Catalyst: Proof of Concept. Advanced Sustainable Systems, 2021, 5, 2100060.	5.3	7
17	Predicting adsorption of micropollutants on non-functionalized and functionalized multi-walled carbon nanotubes: Experimental study and LFER modeling. Journal of Hazardous Materials, 2021, 411, 125124.	12.4	15
18	Polyethyleneimine impregnated alginate capsule as a high capacity sorbent for the recovery of monovalent and trivalent gold. Scientific Reports, 2021, 11, 17836.	3.3	22

#	Article	IF	CITATIONS
19	Review of the toxic effects of ionic liquids. Science of the Total Environment, 2021, 786, 147309.	8.0	135
20	Development of prediction models for adsorption properties of chitin and chitosan for micropollutants. Chemical Engineering Journal, 2021, 426, 131341.	12.7	25
21	Development of polyethyleneimine-starch fibers stable over the broad pH range for selective adsorption of gold from actual leachate solutions of waste electrical and electronic equipment. Journal of Cleaner Production, 2021, 328, 129545.	9.3	12
22	Benignly-fabricated crosslinked polyethylenimine/calcium-alginate fibers as high-performance adsorbents for effective recovery of gold. Journal of Cleaner Production, 2020, 252, 119389.	9.3	70
23	Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings. Environmental Science and Pollution Research, 2020, 27, 1053-1068.	5.3	46
24	Ion-imprinted chitosan fiber for recovery of Pd(II): Obtaining high selectivity through selective adsorption and two-step desorption. Environmental Research, 2020, 182, 108995.	7.5	40
25	Highly efficient and acid-resistant metal-organic frameworks of MIL-101(Cr)-NH2 for Pd(II) and Pt(IV) recovery from acidic solutions: Adsorption experiments, spectroscopic analyses, and theoretical computations. Journal of Hazardous Materials, 2020, 387, 121689.	12.4	62
26	Sequential recovery of gold and copper from bioleached wastewater using ion exchange resins. Environmental Pollution, 2020, 266, 115167.	7.5	61
27	New insight into continuous recirculation-process for treating arsenate using bacterial biosorbent. Bioresource Technology, 2020, 316, 123961.	9.6	9
28	Ionic liquid-assisted cellulose coating of chitosan hydrogel beads and their application as drug carriers. Scientific Reports, 2020, 10, 13905.	3.3	19
29	Recovery of gold via adsorption-incineration techniques using banana peel and its derivatives: Selectivity and mechanisms. Waste Management, 2020, 113, 225-235.	7.4	30
30	Simultaneous scavenging of persistent pharmaceuticals with different charges by activated carbon fiber from aqueous environments. Chemosphere, 2020, 247, 125909.	8.2	14
31	Adsorptive removal of cationic tricyclic antidepressants using cation-exchange resin. Environmental Science and Pollution Research, 2020, 27, 24760-24771.	5.3	6
32	Adsorptive removal of endocrine-disrupting compounds and a pharmaceutical using activated charcoal from aqueous solution: kinetics, equilibrium, and mechanism studies. Environmental Science and Pollution Research, 2019, 26, 33897-33905.	5.3	26
33	Application of general toxic effects of ionic liquids to predict toxicities of ionic liquids to Spodoptera frugiperda 9, Eisenia fetida, Caenorhabditis elegans, and Danio rerio. Environmental Pollution, 2019, 255, 113185.	7.5	17
34	Structure-controlled recovery of palladium(II) from acidic aqueous solution using metal-organic frameworks of MOF-802, UiO-66 and MOF-808. Chemical Engineering Journal, 2019, 362, 280-286.	12.7	93
35	Super‣table, Highly Efficient, and Recyclable Fibrous Metal–Organic Framework Membranes for Precious Metal Recovery from Strong Acidic Solutions. Small, 2019, 15, e1805242.	10.0	54
36	Functionalized magnetic biopolymeric graphene oxide with outstanding performance in water purification. NPG Asia Materials, 2019, 11, .	7.9	45

#	Article	IF	CITATIONS
37	High-performance and acid-tolerant polyethylenimine-aminated polyvinyl chloride fibers: fabrication and application for recovery of platinum from acidic wastewaters. Journal of Environmental Chemical Engineering, 2019, 7, 102839.	6.7	25
38	Thiourea-Immobilized Polymer Beads for Sorption of Cr(VI) Ions in Acidic Aqueous Media. Macromolecular Research, 2019, 27, 515-521.	2.4	4
39	Effective Recovery of Pt(IV) from Acidic Solution by a Defective Metal–Organic Frameworks Using Central Composite Design for Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 7510-7518.	6.7	22
40	Removal of anionic arsenate by a PEI-coated bacterial biosorbent prepared from fermentation biowaste. Chemosphere, 2019, 226, 67-74.	8.2	17
41	Metal–Organic Framework Fibrous Membranes: Superâ€Stable, Highly Efficient, and Recyclable Fibrous Metal–Organic Framework Membranes for Precious Metal Recovery from Strong Acidic Solutions (Small 10/2019). Small, 2019, 15, 1970055.	10.0	1
42	Characterization of the residual biochemical components of sequentially extracted banana peel biomasses and their environmental remediation applications. Waste Management, 2019, 89, 141-153.	7.4	29
43	QSAR modelling for predicting adsorption of neutral, cationic, and anionic pharmaceuticals and other neutral compounds to microalgae Chlorella vulgaris in aquatic environment. Water Research, 2019, 151, 288-295.	11.3	22
44	Prediction of adsorption properties for ionic and neutral pharmaceuticals and pharmaceutical intermediates on activated charcoal from aqueous solution via LFER model. Chemical Engineering Journal, 2019, 362, 199-206.	12.7	42
45	Recycling waste nutrient solution originating from the plant factory with the cultivation of newly isolated Acutodesmus species. Journal of Biotechnology, 2019, 289, 15-25.	3.8	4
46	Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustainable Cities and Society, 2019, 46, 101381.	10.4	35
47	Quantitative Structure-Activity Relationships to Estimate Toxicity of Ionic Liquids (ILs). , 2019, , 1-16.		0
48	Estimating environmental fate of tricyclic antidepressants in wastewater treatment plant. Science of the Total Environment, 2018, 634, 52-58.	8.0	24
49	Validation and updating of QSAR models for partitioning coefficients of ionic liquids in octanol-water and development of a new LFER model. Science of the Total Environment, 2018, 633, 920-928.	8.0	17
50	Selective adsorption of Pd(II) over interfering metal ions (Co(II), Ni(II), Pt(IV)) from acidic aqueous phase by metal-organic frameworks. Chemical Engineering Journal, 2018, 345, 337-344.	12.7	76
51	Facile fabrication of polyacrylic acid-polyvinyl chloride composite adsorbents for the treatment of cadmium-contaminated wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 2401-2408.	6.7	20
52	Synthesis of thiourea-immobilized polystyrene nanoparticles and their sorption behavior with respect to silver ions in aqueous phase. Journal of Hazardous Materials, 2018, 344, 398-407.	12.4	26
53	Development of waste biomass based sorbent for removal of cyanotoxin microcystin-LR from aqueous phases. Bioresource Technology, 2018, 247, 690-696.	9.6	27
54	Environmental Concerns Regarding Ionic Liquids in Biotechnological Applications. Advances in Biochemical Engineering/Biotechnology, 2018, 168, 241-328.	1.1	3

#	Article	IF	CITATIONS
55	Polyethylenimine-coated biomass-chitosan composite fibers for recovery of ruthenium from industrial effluents: Effects of chitosan molecular weight and drying method. Hydrometallurgy, 2018, 182, 114-120.	4.3	11
56	Experimental and QSAR studies on adsorptive interaction of anionic nonsteroidal anti-inflammatory drugs with activated charcoal. Chemosphere, 2018, 212, 620-628.	8.2	11
57	Potentiometric titration data on the enhancement of sorption capacity of surface-modified biosorbents: functional groups scanning method. Clean Technologies and Environmental Policy, 2018, 20, 2191-2199.	4.1	7
58	Highly Effective Removal of Nonsteroidal Anti-inflammatory Pharmaceuticals from Water by Zr(IV)-Based Metal–Organic Framework: Adsorption Performance and Mechanisms. ACS Applied Materials & Interfaces, 2018, 10, 28076-28085.	8.0	171
59	Adsorptive interaction of cationic pharmaceuticals on activated charcoal: Experimental determination and QSAR modelling. Journal of Hazardous Materials, 2018, 360, 529-535.	12.4	26
60	A phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential alternative source for phosphorus fertilizers. Journal of Cleaner Production, 2018, 196, 163-171.	9.3	55
61	Fabrication of Stable and Regenerable Amine Functionalized Magnetic Nanoparticles as a Potential Material for Pt(IV) Recovery from Acidic Solutions. ACS Applied Materials & Interfaces, 2017, 9, 18650-18659.	8.0	25
62	Quantitative analysis of adsorptive interactions of ionic and neutral pharmaceuticals and other chemicals with the surface of Escherichia coli cells in aquatic environment. Environmental Pollution, 2017, 227, 8-14.	7.5	15
63	Comment on "Filling environmental data gaps with QSPR for ionic liquids: Modeling n-octanol/water coefficient― Journal of Hazardous Materials, 2017, 329, 348-350.	12.4	5
64	Effective adsorption of Pd(<scp>ii</scp>), Pt(<scp>iv</scp>) and Au(<scp>iii</scp>) by Zr(<scp>iv</scp>)-based metal–organic frameworks from strongly acidic solutions. Journal of Materials Chemistry A, 2017, 5, 13557-13564.	10.3	179
65	Preparation, characterization and lead adsorption study of tripolyphosphate-modified waste Lyocell fibers. Journal of Environmental Chemical Engineering, 2017, 5, 412-421.	6.7	18
66	Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Advances in Colloid and Interface Science, 2017, 242, 35-58.	14.7	85
67	Development of polyethyleneimine-loaded core-shell chitosan hollow beads and their application for platinum recovery in sequential metal scavenging fill-and-draw process. Journal of Hazardous Materials, 2017, 324, 724-731.	12.4	49
68	Facile room temperature deposition of gold nanoparticle-ionic liquid hybrid film on silica substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 170, 48-55.	3.9	3
69	The Preparation of Modified Industrial Waste Polyacrylonitrile for the Adsorptive Recovery of Pt(IV) from Acidic Solutions. Materials, 2016, 9, 988.	2.9	11
70	Development of Surface-Modified Polyacrylonitrile Fibers and Their Selective Sorption Behavior of Precious Metals. Applied Sciences (Switzerland), 2016, 6, 378.	2.5	18
71	Poly(styrenesulfonic acid)-impregnated alginate capsule for the selective sorption of Pd(II) from a Pt(IV)-Pd(II) binary solution. Journal of Hazardous Materials, 2016, 318, 79-89.	12.4	38
72	Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 250-258.	5.3	35

#	Article	IF	CITATIONS
73	Biosynthesis of Gold Nanoparticles Using <i>Ocimum sanctum</i> Extracts by Solvents with Different Polarity. ACS Sustainable Chemistry and Engineering, 2016, 4, 2651-2659.	6.7	86
74	Reusable polyethylenimine-coated polysulfone/bacterial biomass composite fiber biosorbent for recovery of Pd(II) from acidic solutions. Chemical Engineering Journal, 2016, 302, 545-551.	12.7	45
75	Removal of Cd(II) by poly(styrenesulfonic acid)-impregnated alginate capsule. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 188-195.	5.3	16
76	Importance of the coating pH in fabrication of polyethylenimine-coated polysulfone- Escherichia coli composite fiber sorbent. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 379-385.	5.3	12
77	Conversion of waste textile cellulose fibers into heavy metal adsorbents. Journal of Industrial and Engineering Chemistry, 2016, 43, 61-68.	5.8	39
78	In-situ generated palladium seeds lead to single-step bioinspired growth of Au Pd bimetallic nanoparticles with catalytic performance. Materials Chemistry and Physics, 2016, 183, 356-365.	4.0	7
79	A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application. Journal of Biotechnology, 2016, 236, 120-127.	3.8	36
80	Fabrication of high performance amine-rich magnetic composite fibers for the recovery of precious Pt(<scp>iv</scp>) from acidic solutions. RSC Advances, 2016, 6, 89089-89097.	3.6	8
81	Comprehensive approach for predicting toxicological effects of ionic liquids on several biological systems using unified descriptors. Scientific Reports, 2016, 6, 33403.	3.3	35
82	Interpretation of toxicological activity of ionic liquids to acetylcholinesterase inhibition via in silico modelling. Chemosphere, 2016, 159, 178-183.	8.2	21
83	Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers. Journal of Hazardous Materials, 2016, 313, 29-36.	12.4	39
84	Preparation of polyaniline-coated polystyrene nanoparticles for the sorption of silver ions. Reactive and Functional Polymers, 2016, 105, 52-59.	4.1	20
85	Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336. Journal of Molecular Liquids, 2016, 216, 18-24.	4.9	121
86	Adsorptive separation of Pb(II) and Cu(II) from aqueous solutions using as-prepared carboxymethylated waste Lyocell fiber. International Journal of Environmental Science and Technology, 2016, 13, 875-886.	3.5	20
87	Three degradation pathways of 1-octyl-3-methylimidazolium cation by activated sludge from wastewater treatment process. Water Research, 2016, 90, 294-300.	11.3	14
88	Valorization of <i>Escherichia coli</i> waste biomass as a biosorbent for removing reactive dyes from aqueous solutions. Desalination and Water Treatment, 2016, 57, 20084-20090.	1.0	15
89	Correlating toxicological effects of ionic liquids on Daphnia magna with in silico calculated linear free energy relationship descriptors. Chemosphere, 2016, 152, 207-213.	8.2	13
90	Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?. Coordination Chemistry Reviews, 2016, 315, 90-111.	18.8	575

#	Article	IF	CITATIONS
91	Adsorptive characteristics of the polyurethane-immobilized Corynebacterium glutamicum biosorbent for removal of Reactive Yellow 2 from aqueous solution. Korean Journal of Chemical Engineering, 2016, 33, 945-951.	2.7	7
92	Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environmental Science and Pollution Research, 2016, 23, 4294-4300.	5.3	38
93	Aliquat-336-impregnated alginate capsule as a green sorbent for selective recovery of gold from metal mixtures. Chemical Engineering Journal, 2016, 289, 413-422.	12.7	91
94	Modelling for antimicrobial activities of ionic liquids towards Escherichia coli, Staphylococcus aureus and Candida albicans using linear free energy relationship descriptors. Journal of Hazardous Materials, 2016, 311, 168-175.	12.4	37
95	Formation of Crystalline Metal Nanoparticles by Marine Isolates and Their Microbial Consortium. Journal of Environmental Engineering, ASCE, 2016, 142, .	1.4	1
96	Removal of hydrolyzed Reactive Black 5 from aqueous solution using a polyethylenimine–polyvinyl chloride composite fiber. Chemical Engineering Journal, 2015, 280, 18-25.	12.7	55
97	Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. Journal of the Taiwan Institute of Chemical Engineers, 2015, 57, 104-110.	5.3	76
98	A sustainable cationic chitosan/E. coli fiber biosorbent for Pt(IV) removal and recovery in batch and column systems. Separation and Purification Technology, 2015, 143, 32-39.	7.9	45
99	Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber. Journal of Hazardous Materials, 2015, 299, 550-561.	12.4	85
100	Biosorption–Incineration–Leaching–Smelting Sequential Process for Ru Recovery from Ru-Bearing Acetic Acid Waste Solution. Industrial & Engineering Chemistry Research, 2015, 54, 7148-7153.	3.7	10
101	Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms. Journal of Hazardous Materials, 2015, 299, 10-17.	12.4	121
102	In vitro release of metformin from iron (III) cross-linked alginate–carboxymethyl cellulose hydrogel beads. International Journal of Biological Macromolecules, 2015, 77, 114-119.	7.5	124
103	In silico prediction of linear free energy relationship descriptors of neutral and ionic compounds. RSC Advances, 2015, 5, 80634-80642.	3.6	25
104	Optimization Studies of Conditions for Biological Synthesis of AuNPs in Various Shapes Using Plant Extract (<i>Ocimum sanctum</i>). Journal of Nanoscience and Nanotechnology, 2015, 15, 326-329.	0.9	2
105	Facile Synthesis of Monodisperse Pt and Pd Nanoparticles Using Antioxidants. Journal of Nanoscience and Nanotechnology, 2015, 15, 412-417.	0.9	13
106	Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain. Journal of Bioscience and Bioengineering, 2015, 119, 433-439.	2.2	55
107	Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)–Pd(II) binary solution. Journal of Hazardous Materials, 2015, 283, 657-662.	12.4	74
108	Biosorbents for recovery of precious metals. Bioresource Technology, 2014, 160, 203-212.	9.6	197

#	Article	IF	CITATIONS
109	L-cysteine impregnated alginate capsules as a sorbent for gold recovery. Polymer Degradation and Stability, 2014, 109, 424-429.	5.8	20
110	On the reason why acid treatment of biomass enhances the biosorption capacity of cationic pollutants. Korean Journal of Chemical Engineering, 2014, 31, 68-73.	2.7	3
111	The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresource Technology, 2014, 160, 93-97.	9.6	44
112	Biosorption of Nickel(II) from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass: equilibrium, kinetics, and thermodynamic studies. Biotechnology and Bioprocess Engineering, 2013, 18, 280-288.	2.6	32
113	Green fabrication of zirconia nano-chains using novel Curcuma longa tuber extract. Materials Letters, 2013, 98, 242-245.	2.6	33
114	Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresource Technology, 2013, 128, 30-35.	9.6	58
115	Recovery of high-purity metallic Pd from Pd(II)-sorbed biosorbents by incineration. Bioresource Technology, 2013, 137, 400-403.	9.6	15
116	Binding sites and mechanisms of cadmium to the dried sewage sludge biomass. Chemosphere, 2013, 93, 146-151.	8.2	14
117	Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	25
118	Removal of 1-ethyl-3-methylimidazolium cations with bacterial biosorbents from aqueous media. Journal of Hazardous Materials, 2013, 244-245, 130-134.	12.4	18
119	Recovery of microbially synthesized gold nanoparticles using sodium citrate and detergents. Chemical Engineering Journal, 2013, 214, 253-261.	12.7	30
120	Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt(IV) recovery from acidic solutions. Journal of Hazardous Materials, 2013, 263, 391-397.	12.4	45
121	Decarboxylated polyethylenimine-modified bacterial biosorbent for Ru biosorption from Ru-bearing acetic acid wastewater. Chemical Engineering Journal, 2013, 230, 303-307.	12.7	22
122	Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustainable Chemistry and Engineering, 2013, 1, 591-602.	6.7	649
123	Glutaraldehyde-crosslinked chitosan beads for sorptive separation of Au(III) and Pd(II): Opening a way to design reduction-coupled selectivity-tunable sorbents for separation of precious metals. Journal of Hazardous Materials, 2013, 248-249, 211-218.	12.4	80
124	Use of ion-exchange resins for the adsorption of the cationic part of ionic liquid, 1-ethyl-3-methylimidazolium. Chemical Engineering Journal, 2013, 214, 78-82.	12.7	32
125	Development of Poly(acrylic acid)-Modified Bacterial Biomass As a High-Performance Biosorbent for Removal of Cd(II) from Aqueous Solution. Industrial & Engineering Chemistry Research, 2013, 52, 6446-6452.	3.7	20
126	Recovery of metallic palladium from hydrochloric acid solutions by a combined method of adsorption and incineration. Chemical Engineering Journal, 2013, 218, 303-308.	12.7	22

#	Article	IF	CITATIONS
127	Development of Alamine-336-Impregnated Alginate Capsule for Selective Recovery of Gold from Multi-Metal Solution. Advanced Materials Research, 2013, 825, 552-555.	0.3	3
128	Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles. , 2013, , 337-348.		6
129	Recovery of gold as a type of porous fiber by using biosorption followed by incineration. Bioresource Technology, 2012, 104, 208-214.	9.6	50
130	Bacterial Biosorption and Biosorbents. , 2011, , 121-141.		4
131	Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. Bioresource Technology, 2011, 102, 11249-11253.	9.6	29
132	Utilization of PEI-modified Corynebacterium glutamicum biomass for the recovery of Pd(II) in hydrochloric solution. Bioresource Technology, 2011, 102, 3888-3893.	9.6	104
133	Sorptive removal and recovery of nickel(II) from an actual effluent of electroplating industry: Comparison between Escherichia coli biosorbent and Amberlite ion exchange resin. Korean Journal of Chemical Engineering, 2011, 28, 927-932.	2.7	16
134	Optimum condition for the removal of Cr(VI) or total Cr using dried leaves of Pinus densiflora. Desalination, 2011, 271, 309-314.	8.2	31
135	Preparation of PEI-coated bacterial biosorbent in water solution: Optimization of manufacturing conditions using response surface methodology. Bioresource Technology, 2011, 102, 1462-1467.	9.6	23
136	Biosynthesis of Au Nanoparticles Using Cumin Seed Powder Extract. Journal of Nanoscience and Nanotechnology, 2011, 11, 1811-1814.	0.9	61
137	Multistage Operation of Airlift Photobioreactor for Increased Production of Astaxanthin from Haematococcus pluvialis. Journal of Microbiology and Biotechnology, 2011, 21, 1081-1087.	2.1	11
138	Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chemical Engineering Journal, 2010, 162, 989-996.	12.7	129
139	The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 2010, 15, 86-102.	2.6	554
140	Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochemistry, 2010, 45, 1450-1458.	3.7	85
141	Recovery of Pd(II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. Journal of Hazardous Materials, 2010, 181, 794-800.	12.4	104
142	Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresource Technology, 2010, 101, 1135-1140.	9.6	88
143	Immobilized citric acid-treated bacterial biosorbents for the removal of cationic pollutants. Chemical Engineering Journal, 2010, 162, 662-668.	12.7	27
144	Sequential process of sorption and incineration for recovery of gold from cyanide solutions: Comparison of ion exchange resin, activated carbon and biosorbent. Chemical Engineering Journal, 2010, 165, 440-446.	12.7	47

#	Article	IF	CITATIONS
145	Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 2010, 101, 7958-7965.	9.6	343
146	Recovery of zero-valent gold from cyanide solution by a combined method of biosorption and incineration. Bioresource Technology, 2010, 101, 8587-8592.	9.6	26
147	Environmental fate and toxicity of ionic liquids: A review. Water Research, 2010, 44, 352-372.	11.3	1,333
148	Surface modified bacterial biosorbent with poly(allylamine hydrochloride): Development using response surface methodology and use for recovery of hexachloroplatinate(IV) from aqueous solution. Water Research, 2010, 44, 5919-5928.	11.3	39
149	Recovery of precious metal from aqueous solution using surface modified biosorbent prepared from the waste biomass of Corynebacterium glutamicum. Journal of Bioscience and Bioengineering, 2009, 108, S82-S83.	2.2	0
150	An assessment of environmental benignity of ionic liquids with different head groups and side chains. Journal of Bioscience and Bioengineering, 2009, 108, S91.	2.2	0
151	Mechanistic aspects of biogenic synthesis of gold nanoparticles. Journal of Bioscience and Bioengineering, 2009, 108, S92.	2.2	0
152	Recovery of zero-valent gold from cyanide solution by biosorption followed by incineration. Journal of Bioscience and Bioengineering, 2009, 108, S93.	2.2	0
153	Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. Journal of Applied Phycology, 2009, 21, 683-689.	2.8	17
154	Biosorption of reactive and basic dyes using fermentation waste Corynebacterium glutamicum: the effects of pH and salt concentration and characterization of the binding sites. World Journal of Microbiology and Biotechnology, 2009, 25, 1259-1266.	3.6	9
155	Reinforcement of carboxyl groups in the surface of Corynebacterium glutamicum biomass for effective removal of basic dyes. Bioresource Technology, 2009, 100, 6301-6306.	9.6	24
156	On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant. Journal of Hazardous Materials, 2009, 161, 538-544.	12.4	37
157	Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons. Journal of Hazardous Materials, 2009, 167, 790-796.	12.4	67
158	Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. Journal of Hazardous Materials, 2009, 171, 400-404.	12.4	200
159	Effect of pH on the binding mechanisms in biosorption of Reactive Orange 16 by Corynebacterium glutamicum. Journal of Colloid and Interface Science, 2009, 331, 83-89.	9.4	30
160	Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 2009, 73, 332-338.	5.0	796
161	Surface modification of the Corynebacterium glutamicum biomass to increase carboxyl binding site for basic dye molecules. Biochemical Engineering Journal, 2009, 46, 1-6.	3.6	21
162	Surface modification of Corynebacterium glutamicum for enhanced Reactive Red 4 biosorption. Bioresource Technology, 2009, 100, 1463-1466.	9.6	65

#	Article	IF	CITATIONS
163	Identification of Metabolites Involved in the Biodegradation of the Ionic Liquid 1-Butyl-3-methylpyridinium Bromide by Activated Sludge Microorganisms. Environmental Science & Technology, 2009, 43, 516-521.	10.0	75
164	An Assessment on the Interaction of a Hydrophilic Ionic Liquid with Different Sorbents. Industrial & amp; Engineering Chemistry Research, 2009, 48, 7283-7288.	3.7	24
165	Evaluation of fermentation waste (Corynebacterium glutamicum) as a biosorbent for the treatment of nickel(II)-bearing solutions. Biochemical Engineering Journal, 2008, 41, 228-233.	3.6	25
166	Chemical modification of Corynebacterium glutamicum to improve methylene blue biosorption. Chemical Engineering Journal, 2008, 145, 1-6.	12.7	63
167	Microalgal photosynthetic activity measurement system for rapid toxicity assessment. Ecotoxicology, 2008, 17, 455-463.	2.4	20
168	Removal of Basic Blue 3 from aqueous solution by Corynebacterium glutamicum biomass: Biosorption and precipitation mechanisms. Korean Journal of Chemical Engineering, 2008, 25, 1060-1064.	2.7	17
169	XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. Journal of Colloid and Interface Science, 2008, 317, 54-61.	9.4	228
170	Competition of Reactive red 4, Reactive orange 16 and Basic blue 3 during biosorption of Reactive blue 4 by polysulfone-immobilized Corynebacterium glutamicum. Journal of Hazardous Materials, 2008, 153, 478-486.	12.4	63
171	Enhanced abiotic reduction of Cr(VI) in a soil slurry system by natural biomaterial addition. Journal of Hazardous Materials, 2008, 160, 422-427.	12.4	28
172	Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes and Pigments, 2008, 76, 502-507.	3.7	45
173	Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp Dyes and Pigments, 2008, 76, 726-732.	3.7	170
174	Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresource Technology, 2008, 99, 8810-8818.	9.6	185
175	How to study Cr(VI) biosorption: Use of fermentation waste for detoxifying Cr(VI) in aqueous solution. Chemical Engineering Journal, 2008, 136, 173-179.	12.7	87
176	Polysulfone-immobilized Corynebacterium glutamicum: A biosorbent for Reactive black 5 from aqueous solution in an up-flow packed column. Chemical Engineering Journal, 2008, 145, 44-49.	12.7	51
177	Advanced kinetic model of the Cr(VI) removal by biomaterials at various pHs and temperatures. Bioresource Technology, 2008, 99, 1141-1147.	9.6	86
178	Biosorption of methylene blue from aqueous solution using free and polysulfone-immobilized Corynebacterium glutamicum: Batch and column studies. Bioresource Technology, 2008, 99, 2864-2871.	9.6	107
179	A new approach to study the decolorization of complex reactive dye bath effluent by biosorption technique. Bioresource Technology, 2008, 99, 5778-5785.	9.6	54
180	Effect of imidazoliumâ€based ionic liquids on the photosynthetic activity and growth rate of <i>Selenastrum capricornutum</i> . Environmental Toxicology and Chemistry, 2008, 27, 1583-1589.	4.3	26

#	Article	IF	CITATIONS
181	Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata. Journal of Bioscience and Bioengineering, 2008, 105, 425-428.	2.2	78
182	Bacterial biosorbents and biosorption. Biotechnology Advances, 2008, 26, 266-291.	11.7	1,466
183	Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chemistry, 2008, 10, 67-72.	9.0	162
184	Different binding mechanisms in biosorption of reactive dyes according to their reactivity. Water Research, 2008, 42, 4847-4855.	11.3	44
185	The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, 2008, 71, 166-171.	6.0	170
186	Single- and Dual-Component Biosorption of Reactive Black 5 and Reactive Orange 16 onto Polysulfone-Immobilized Esterified <i>Corynebacterium </i> glutamicum. Industrial & Engineering Chemistry Research, 2008, 47, 3179-3185.	3.7	13
187	An Aminated Bacterial Biosorbent Capable of Effectively Binding Negatively Charged Pollutants in Aqueous Solution. Adsorption Science and Technology, 2008, 26, 589-598.	3.2	1
188	Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere, 2007, 66, 939-946.	8.2	97
189	Biosorption of Reactive black 5 by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere, 2007, 68, 1838-1845.	8.2	54
190	Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere, 2007, 70, 298-305.	8.2	212
191	Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: Effect of alkyl-chain length. Chemosphere, 2007, 69, 1003-1007.	8.2	148
192	Chemical Modification and Immobilization ofCorynebacterium glutamicumfor Biosorption of Reactive Black 5 from Aqueous Solution. Industrial & Engineering Chemistry Research, 2007, 46, 608-617.	3.7	71
193	Mechanistic understanding and performance enhancement of biosorption of reactive dyestuffs by the waste biomass generated from amino acid fermentation process. Biochemical Engineering Journal, 2007, 36, 2-7.	3.6	69
194	Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials, 2007, 141, 45-52.	12.4	153
195	EFFECT OF IMIDAZOLIUM-BASED IONIC LIQUIDS ON THE PHOTOSYNTHETIC ACTIVITY AND GROWTH RATE OF SELENASTRUM CAPRICORNUTUM. Environmental Toxicology and Chemistry, 2007, preprint, 1.	4.3	8
196	Comment on the Removal Mechanism of Hexavalent Chromium by Biomaterials or Biomaterial-Based Activated Carbons. Industrial & Engineering Chemistry Research, 2006, 45, 2405-2407.	3.7	37
197	Biosorption Process for Treatment of Electroplating Wastewater Containing Cr(VI):Â Laboratory-Scale Feasibility Test. Industrial & Engineering Chemistry Research, 2006, 45, 5059-5065.	3.7	91
198	Comment on "Sorption of Cr(VI) from dilute solutions and wastewater by live and pretreated biomass of Aspergillus flavus―by Deepa et al Chemosphere, 2006, 63, 1060-1062.	8.2	0

#	Article	IF	CITATIONS
199	Comment on "Chromate ion adsorption by agricultural by-products modified with dimethyloldihydroxylethylene urea and choline chloride―by Wartelle and Marshall. Water Research, 2006, 40, 1501-1504.	11.3	21
200	Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme and Microbial Technology, 2006, 39, 490-495.	3.2	83
201	Effect of Ni(II) on the reduction of Cr(VI) by Ecklonia biomass. Bioresource Technology, 2006, 97, 1592-1598.	9.6	27
202	Performance and mechanism in binding of Reactive Orange 16 to various types of sludge. Biochemical Engineering Journal, 2006, 28, 208-214.	3.6	66
203	Performance, kinetics and equilibrium in biosorption of anionic dye Reactive Black 5 by the waste biomass of Corynebacterium glutamicum as a low-cost biosorbent. Chemical Engineering Journal, 2006, 121, 37-43.	12.7	82
204	Column study on Cr(VI)-reduction using the brown seaweed Ecklonia biomass. Journal of Hazardous Materials, 2006, 137, 1377-1384.	12.4	28
205	Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons. Journal of Hazardous Materials, 2006, 137, 1254-1257.	12.4	90
206	Biosorption of cadmium by various types of dried sludge: An equilibrium study and investigation of mechanisms. Journal of Hazardous Materials, 2006, 138, 378-383.	12.4	105
207	Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste. Journal of Hazardous Materials, 2006, 138, 370-377.	12.4	33
208	Broadening of the optimal pH range for reactive dye biosorption by chemical modification of surface functional groups of Corynebacterium glutamicum biomass. Studies in Surface Science and Catalysis, 2006, , 161-164.	1.5	0
209	Oxygen evolution rate of photosynthetic microalga Haematococcus pluvialis depending on light intensity and quality. Studies in Surface Science and Catalysis, 2006, 159, 157-160.	1.5	9
210	Measurement of microalgal photosynthetic activity depending on light intensity and quality. Biochemical Engineering Journal, 2005, 27, 127-131.	3.6	67
211	Interaction between protonated waste biomass of Corynebacterium glutamicum and anionic dye Reactive Red 4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262, 175-180.	4.7	80
212	High-rate slurry-phase decomposition of food wastes: indirect performance estimation from dissolved oxygen. Process Biochemistry, 2005, 40, 1301-1306.	3.7	12
213	Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochemistry, 2005, 40, 2559-2565.	3.7	176
214	Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp Chemosphere, 2005, 60, 1356-1364.	8.2	342
215	Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research, 2005, 39, 533-540.	11.3	361
216	Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnology Letters, 2004, 26, 331-336.	2.2	65

#	Article	IF	CITATIONS
217	Biosorptive Decolorization of Reactive Orange 16 Using the Waste Biomass of Corynebacterium glutamicum. Industrial & Engineering Chemistry Research, 2004, 43, 7865-7869.	3.7	91
218	Chromium Biosorption by Thermally Treated Biomass of the Brown Seaweed,Eckloniasp Industrial & amp; Engineering Chemistry Research, 2004, 43, 8226-8232.	3.7	55
219	Reduction of Hexavalent Chromium with the Brown SeaweedEckloniaBiomass. Environmental Science & Technology, 2004, 38, 4860-4864.	10.0	256
220	Kinetic modeling of the light-dependent photosynthetic activity of the green microalgaChlorella vulgaris. Biotechnology and Bioengineering, 2003, 83, 303-311.	3.3	97
221	Modeling of Lithium Interference in Cadmium Biosorption. Environmental Science & Technology, 2003, 37, 3601-3608.	10.0	59
222	Long-term operation of slurry bioreactor for decomposition of food wastes. Bioresource Technology, 2002, 84, 101-104.	9.6	13
223	Evaluation of Factors Promoting Astaxanthin Production by a Unicellular Green Alga, Haematococcus pluvialis, with Fractional Factorial Design. Biotechnology Progress, 2002, 18, 1170-1175.	2.6	59
224	Biosorption of Trivalent Chromium on the Brown Seaweed Biomass. Environmental Science & Technology, 2001, 35, 4353-4358.	10.0	332
225	Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Applied Microbiology and Biotechnology, 2001, 55, 765-770.	3.6	77
226	Oxygen-limited decomposition of food wastes in a slurry bioreactor. Journal of Industrial Microbiology and Biotechnology, 2001, 27, 67-71.	3.0	6
227	Treatment of food wastes using slurry-phase decomposition. Bioresource Technology, 2000, 73, 21-27.	9.6	37
228	Reclamation of wastewater from a steel-making plant using an airlift submerged biofilm reactor. Journal of Chemical Technology and Biotechnology, 1998, 73, 162-168.	3.2	9
229	Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients. Journal of Chemical Technology and Biotechnology, 1997, 69, 451-455.	3.2	242
230	Title is missing!. Biotechnology Letters, 1997, 19, 831-833.	2.2	4
231	Development of gas recycling photobioreactor system for microalgal carbon dioxide fixation. Korean Journal of Chemical Engineering, 1997, 14, 297-300.	2.7	28
232	Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients. Journal of Chemical Technology and Biotechnology, 1997, 69, 451-455.	3.2	5
233	Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration. Biotechnology Letters, 1996, 10, 713.	0.5	26
234	Development of Powerful Bacterial Biosorbent Fibers for Recovery of Ruthenium and Comprehension of the Role of Bacterial Biomass in the Fiber. Advanced Materials Research, 0, 825, 560-563.	0.3	1

#	Article	IF	CITATIONS
235	Recovery of Zero-Valent Ruthenium from Acetic Acid Waste Solution by a Combined Process of Biosorption with Bacterial Biosorbent Fibers and Incineration. Advanced Materials Research, 0, 825, 564-567.	0.3	0