Ivan RaÅ;ka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3632760/publications.pdf

Version: 2024-02-01

		109321	98798
136	5,085	35	67
papers	citations	h-index	g-index
143	143	143	4853
143	143	143	4033
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Applications of biosynthesized metallic nanoparticles $\hat{a}\in$ A review. Acta Biomaterialia, 2014, 10, 4023-4042.	8.3	390
2	Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin Journal of Experimental Medicine, 1991, 173, 1407-1419.	8.5	367
3	Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Experimental Cell Research, 1991, 195, 27-37.	2.6	327
4	Structure and function of the nucleolus in the spotlight. Current Opinion in Cell Biology, 2006, 18, 325-334.	5.4	192
5	Association between the nucleolus and the coiled body. Journal of Structural Biology, 1990, 104, 120-127.	2.8	172
6	New Insights into Nucleolar Architecture and Activity. International Review of Cytology, 2006, 255, 177-235.	6.2	161
7	Ribosomal genes in focus. Journal of Cell Biology, 2002, 157, 743-748.	5.2	132
8	The Drosophila lethal(2)giant larvae tumor suppressor protein is a component of the cytoskeleton Journal of Cell Biology, 1994, 127, 1345-1360.	5.2	125
9	Immunolocalization of 7-2-ribonucleoprotein in the granular component of the nucleolus. Experimental Cell Research, 1988, 176, 117-128.	2.6	118
10	The nucleolus and transcription of ribosomal genes. Biology of the Cell, 2004, 96, 579-594.	2.0	118
11	Human autoantibodies: probes for nucleolus structure and function. Vigiliae Christianae, 1987, 54, 131-143.	0.1	116
12	Nonisotopic Ultrastructural Mapping of Transcription Sites within the Nucleolus. Experimental Cell Research, 1993, 208, 275-281.	2.6	106
13	Nuclear pre-mRNA Compartmentalization: Trafficking of Released Transcripts to Splicing Factor Reservoirs. Molecular Biology of the Cell, 2000, 11, 497-510.	2.1	97
14	Potential Roles for Ubiquitin and the Proteasome during Ribosome Biogenesis. Molecular and Cellular Biology, 2006, 26, 5131-5145.	2.3	90
15	Does the Synthesis of Ribosomal RNA Take Place within Nucleolar Fibrillar Centers or Dense Fibrillar Components? A Critical Appraisal. Journal of Structural Biology, 1995, 114, 1-22.	2.8	77
16	Oldies but goldies: searching for Christmas trees within the nucleolar architecture. Trends in Cell Biology, 2003, 13, 517-525.	7.9	75
17	Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma, 1999, 108, 325-335.	2.2	74
18	Does the synthesis of ribosomal RNA take place-within nucleolar fibrillar centers or dense fibrillar components?. Biology of the Cell, 1989, 65, 79-82.	2.0	74

#	Article	IF	CITATIONS
19	Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A. European Journal of Cell Biology, 2008, 87, 291-303.	3.6	72
20	Immunocytochemistry of the cell nucleus. Electron Microscopy Reviews, 1990, 3, 301-353.	1.3	70
21	Comprehension of drug toxicity: Software and databases. Computers in Biology and Medicine, 2014, 45, 20-25.	7.0	69
22	CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. Journal of Cell Science, 2002, 115, 2317-2327.	2.0	67
23	Structure and Epigenetics of Nucleoli in Comparison With Non-nucleolar Compartments. Journal of Histochemistry and Cytochemistry, 2010, 58, 391-403.	2.5	61
24	Flexible structured illumination microscope with a programmable illumination array. Optics Express, 2012, 20, 24585.	3.4	61
25	Plain and Complex Flagella of Pseudomonas rhodos : Analysis of Fine Structure and Composition. Journal of Bacteriology, 1974, 117, 844-857.	2.2	61
26	CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. Journal of Cell Science, 2002, 115, 2317-27.	2.0	54
27	Prespliceosomal Assembly on Microinjected Precursor mRNA Takes Place in Nuclear Speckles. Molecular Biology of the Cell, 2001, 12, 393-406.	2.1	52
28	Defined Nuclear Changes Accompany the Reprogramming of the Microspore to Embryogenesis. Journal of Structural Biology, 2000, 129, 223-232.	2.8	49
29	Electron microscopy of DNA replication in 3-D: Evidence for similar-sized replication foci throughout S-phase. Journal of Cellular Biochemistry, 2005, 94, 126-138.	2.6	48
30	Early markers of in vitro microspore reprogramming to embryogenesis in olive (Olea europaea L.). Plant Science, 2008, 174, 597-605.	3.6	45
31	Ultrastructural Nonisotopic Mapping of Nucleolar Transcription Sites in Onion Protoplasts. Journal of Structural Biology, 1996, 116, 253-263.	2.8	43
32	The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models. Science of the Total Environment, 2019, 659, 1387-1394.	8.0	43
33	Minimizing detection errors in single molecule localization microscopy. Optics Express, 2011, 19, 3226.	3.4	42
34	Nuclear ultrastructures associated with the RNA synthesis and processing. Journal of Cellular Biochemistry, 1995, 59, 11-26.	2.6	41
35	Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli. Journal of Structural Biology, 2007, 160, 49-56.	2.8	40
36	Separation of replication and transcription domains in nucleoli. Journal of Structural Biology, 2014, 188, 259-266.	2.8	39

#	Article	IF	CITATIONS
37	System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 307-315.	3.3	38
38	Duration of the first steps of the human rRNA processing. Nucleus, 2013, 4, 134-141.	2.2	37
39	Ultrastructure of Cytoplasmic and Nuclear Inosine-5'-Monophosphate Dehydrogenase 2 "Rods and Rings―Inclusions. Journal of Histochemistry and Cytochemistry, 2014, 62, 739-750.	2.5	37
40	Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins – the introduction of protein-corona-free polymer nanomedicine. Nanoscale, 2018, 10, 6194-6204.	5.6	37
41	Apocrine Secretion in Drosophila Salivary Glands: Subcellular Origin, Dynamics, and Identification of Secretory Proteins. PLoS ONE, 2014, 9, e94383.	2.5	36
42	Structure-function subcompartments of the mammalian cell nucleus as revealed by the electron microscopic affinity cytochemistry. Cell Biology International Reports, 1992, 16, 771-789.	0.6	34
43	Ultrastructural immunolocalization of cyclin/PCNA in synchronized 3T3 cells. Experimental Cell Research, 1989, 184, 81-89.	2.6	32
44	Spatio-temporal dynamics at rDNA foci: Global switching between DNA replication and transcription. Journal of Cellular Biochemistry, 2005, 94, 554-565.	2.6	31
45	The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease. Scientific Reports, 2016, 6, 33631.	3.3	31
46	Prevalence and Risk Factors of Osteoporosis in Postmenopausal Women with Type 2 Diabetes Mellitus. Central European Journal of Public Health, 2017, 25, 3-10.	1.1	31
47	Searching therapeutic agents for treatment of Alzheimer disease using the Monte Carlo method. Computers in Biology and Medicine, 2015, 64, 148-154.	7.0	30
48	Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish. Biomacromolecules, 2019, 20, 1798-1815.	5. 4	30
49	QSAR modeling of endpoints for peptides which is based on representation of the molecular structure by a sequence of amino acids. Structural Chemistry, 2012, 23, 1891-1904.	2.0	29
50	Trajectories and nuclear arrangement of PML bodies are influenced by Aâ€type lamin deficiency. Biology of the Cell, 2012, 104, 418-432.	2.0	29
51	Heterogenous nuclear RNP C1 and C2 core proteins are targets for an autoantibody found in the serum of a patient with systemic sclerosis and psoriatic arthritis. Arthritis and Rheumatism, 1997, 40, 2172-2177.	6.7	28
52	Chromatin position in human HepG2 cells: Although being non-random, significantly changed in daughter cells. Journal of Structural Biology, 2009, 165, 107-117.	2.8	27
53	Nucleolar DNA: the host and the guests. Histochemistry and Cell Biology, 2016, 145, 359-372.	1.7	27
54	Organization of human replicon: Singles or zipping couples?. Journal of Structural Biology, 2009, 165, 204-213.	2.8	26

#	Article	IF	CITATIONS
55	A change of developmental program induces the remodeling of the interchromatin domain during microspore embryogenesis in Brassica napus L Journal of Plant Physiology, 2011, 168, 746-757.	3.5	26
56	Nucleologenesis in the Caenorhabditis elegans Embryo. PLoS ONE, 2012, 7, e40290.	2.5	24
57	Analysis of ring-shaped nucleoli in serially sectioned human lymphocytes. Cell and Tissue Research, 1983, 234, 707-711.	2.9	23
58	Fine structure of the "PcG body" in human U-2 OS cells established by correlative light-electron microscopy. Nucleus, 2011, 2, 219-228.	2.2	23
59	Ultrastructural cryoimmunocytochemistry is a convenient tool for the study of DNA replication in cultured cells. Journal of Electron Microscopy Technique, 1991, 18, 91-105.	1.1	22
60	Potassium bromide and the thyroid gland of the rat: morphology and immunohistochemistry, RIA and INAA analysis. Annals of Anatomy, 1997, 179, 421-431.	1.9	22
61	Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks. Nucleic Acids Research, 2018, 46, 6112-6128.	14.5	22
62	Cyclin A Down-Regulation in TGF \hat{i}^21 -Arrested Follicular Lymphoma Cells. Experimental Cell Research, 2000, 261, 250-259.	2.6	21
63	Histones and DNA Ultrastructural Distribution in Plant Cell Nucleus: A Combination of Immunogold and Cytochemical Methods. Experimental Cell Research, 1998, 242, 45-59.	2.6	20
64	Long-term action of potassium bromide on the rat thyroid gland. Acta Histochemica, 1998, 100, 11-23.	1.8	19
65	KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus, 2018, 9, 431-441.	2.2	19
66	Formation of Nuclear Splicing Factor Compartments Is Independent of Lamins A/C. Molecular Biology of the Cell, 2004, 15, 4904-4910.	2.1	18
67	$HP1\hat{i}^2$ -dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics and Chromatin, 2014, 7, 39.	3.9	18
68	Reproduction of the FC/DFC units in nucleoli. Nucleus, 2016, 7, 203-215.	2.2	18
69	Non-isotopic mapping of ribosomal RNA synthesis and processing in the nucleolus. Chromosoma, 2001, 110, 460-470.	2.2	17
70	A simple Fourier filter for suppression of the missing wedge ray artefacts in single-axis electron tomographic reconstructions. Journal of Structural Biology, 2014, 186, 141-152.	2.8	17
71	Hypocalcaemic cardiomyopathy: a description of two cases and a literature review. ESC Heart Failure, 2020, 7, 1291-1301.	3.1	16
72	Vacuole dynamics in the salivary glands of <i>Drosophila melanogaster </i> during prepupal development. Development Growth and Differentiation, 2015, 57, 74-96.	1.5	15

#	Article	IF	Citations
73	PCNA is recruited to irradiated chromatin in late S-phase and is most pronounced in G2 phase of the cell cycle. Protoplasma, 2017, 254, 2035-2043.	2.1	15
74	Alternative intronic promoters in development and disease. Protoplasma, 2017, 254, 1201-1206.	2.1	14
7 5	Novel thermo-responsive double-hydrophilic and hydrophobic MPEO-b-PEtOx-b-PCL triblock terpolymers: Synthesis, characterization and self-assembly studies. Polymer, 2015, 59, 215-225.	3.8	13
76	The searching for agents for Alzheimer's disease treatment via the system of self-consistent models. Toxicology Mechanisms and Methods, 2022, , 1-9.	2.7	13
77	Electron microscopy of polyheads of bacteriophage T4 prepared by freeze-etching. Journal of Ultrastructure Research, 1973, 44, 27-40.	1.1	12
78	Cyclin D–cdk6 complex is targeted by p21WAF in growth-arrested lymphoma cells. Journal of Structural Biology, 2002, 140, 49-56.	2.8	11
79	Temporal regulation of Drosophila salivary gland degeneration by the Broad-Complex transcription factors. Journal of Structural Biology, 2002, 140, 67-78.	2.8	11
80	Poly(ethylene oxide monomethyl ether)- <i>block</i> -yoly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation. Biomacromolecules, 2018, 19, 2443-2458.	5.4	11
81	Expression of the proliferating cell nuclear antigen (PCNA) in the rat thyroid gland after exposure to bromide. Acta Histochemica, 1997, 99, 391-399.	1.8	10
82	The yeast Ura2 protein that catalyses the first two steps of pyrimidines biosynthesis accumulates not in the nucleus but in the cytoplasm, as shown by immunocytochemistry and Ura2-green fluorescent protein mapping. Yeast, 2000, 16, 1299-1312.	1.7	10
83	Pre-ribosomal RNA is processed in permeabilised cells at the site of transcription. European Journal of Cell Biology, 2000, 79, 202-207.	3.6	10
84	Pontin is localized in nucleolar fibrillar centers. Chromosoma, 2008, 117, 487-497.	2.2	10
85	Depletion of Aâ€type lamins and <i>Lap2α</i> reduces 53BP1 accumulation at UVâ€induced DNA lesions and <i>Lap2α</i> protein is responsible for compactness of irradiated chromatin. Journal of Cellular Biochemistry, 2018, 119, 8146-8162.	2.6	10
86	High Prevalence of Hypovitaminosis D in Postmenopausal Women with Type 2 Diabetes Mellitus. Prague Medical Report, 2016, 117, 5-17.	0.8	10
87	CORAL Software: Analysis of Impacts of Pharmaceutical Agents Upon Metabolism via the Optimal Descriptors. Current Drug Metabolism, 2017, 18, 500-510.	1.2	10
88	Fine structure of crystalline inclusions in B-cells of the islets of Langerhans in the alligator. Cell and Tissue Research, 1978, 187, 535-550.	2.9	9
89	In situ fluorescence visualization of bromouridine incorporated into newly transcribed nucleolar RNA. Acta Histochemica, 2000, 102, 15-20.	1.8	9
90	Searching for active ribosomal genes in situ: light microscopy in light of the electron beam. Journal of Structural Biology, 2002, 140, 227-231.	2.8	9

#	Article	IF	Citations
91	QSAR of the testosterone binding globulin affinity by means of correlation weighting of local invariants of the graph of atomic orbitals. Bioorganic and Medicinal Chemistry, 2005, 13, 6830-6835.	3.0	9
92	Localized movement and morphology of UBF1-positive nucleolar regions are changed by \hat{I}^3 -irradiation in G2 phase of the cell cycle. Nucleus, 2015, 6, 301-313.	2.2	9
93	A demethylation deficient isoform of the lysine demethylase KDM2A interacts with pericentromeric heterochromatin in an HP1a-dependent manner. Nucleus, 2017, 8, 563-572.	2.2	9
94	Improved building up a model of toxicity towards Pimephales promelas by the Monte Carlo method. Environmental Toxicology and Pharmacology, 2016, 48, 278-285.	4.0	8
95	Endosomal vacuoles of the prepupal salivary glands of <i>Drosophila</i> play an essential role in the metabolic reallocation of iron. Development Growth and Differentiation, 2018, 60, 411-430.	1.5	8
96	Structural Organization of the Pre-mRNA Splicing Commitment: A Hypothesis. Journal of Structural Biology, 1996, 117, 189-194.	2.8	7
97	The effect of bromide on the ultrastructure of rat thyrocytes. Annals of Anatomy, 2004, 186, 209-216.	1.9	7
98	Cytoskeletal proteins regulate chromatin access of BR-C transcription factor and Rpd3-Sin3A histone deacetylase complex inDrosophilasalivary glands. Nucleus, 2011, 2, 489-499.	2.2	7
99	Localized Movement and Levels of 53BP1 Protein Are Changed by γâ€irradiation in PML Deficient Cells. Journal of Cellular Biochemistry, 2016, 117, 2583-2596.	2.6	7
100	Discontinuous transcription. Nucleus, 2018, 9, 149-160.	2.2	7
101	Binding of (125I) triiodothyronine to human peripheral leukocytes and its internalization. Experientia, 1987, 43, 1117-1118.	1.2	6
102	Massive excretion of calcium oxalate from late prepupal salivary glands of <i><scp>D</scp>rosophila melanogaster</i> demonstrates active nephridialâ€like anion transport. Development Growth and Differentiation, 2016, 58, 562-574.	1.5	6
103	Alternative isoforms of KDM2A and KDM2B lysine demethylases negatively regulate canonical Wnt signaling. PLoS ONE, 2020, 15, e0236612.	2.5	6
104	Expression of \hat{l}^2 -catenins and cadherins by follicular dendritic cells in human lymph nodes. Acta Histochemica, 2000, 102, 369-380.	1.8	5
105	Replication-coupled modulation of early replicating chromatin domains detected by anti-actin antibody. Journal of Cellular Biochemistry, 2005, 94, 899-916.	2.6	5
106	Searching for Active Ribosomal Genes. Progress in Molecular and Subcellular Biology, 2008, , 23-56.	1.6	5
107	A new epigenetic marker: The replication-coupled, cell cycle-dependent, dual modification of the histone H4 tail. Journal of Structural Biology, 2009, 167, 76-82.	2.8	5
108	The Index of Ideality of Correlation (IIC): model for sweetness. Monatshefte Fýr Chemie, 2019, 150, 617-623.	1.8	5

#	Article	IF	Citations
109	The sequence of amino acids as the basis for the model of biological activity of peptides. Theoretical Chemistry Accounts, 2021, 140, 15.	1.4	5
110	Optical diffraction analysis of crystalline inclusions in the rough endoplasmic reticulum of islet parenchymal cells of the hagfish, Myxine glutinosa. Cell and Tissue Research, 1982, 225, 461-464.	2.9	4
111	Ultrastructural localization of rRNA in HeLa cells, rat liver cells andXenopus laevis oocytes by means of the monoclonal antibody-protein A-gold technique. The Histochemical Journal, 1985, 17, 925-938.	0.6	4
112	Dynamics of replication foci in early S phase as visualized by cross-correlation function. Journal of Structural Biology, 2005, 151, 61-68.	2.8	4
113	Dynamics of Polycomb chromatin domains under conditions of increased molecular crowding. Biology of the Cell, 2013, 105, 519-534.	2.0	4
114	Development of QSAR models for predicting anti-HIV-1 activity using the Monte Carlo method. Open Chemistry, 2013, 11, 371-380.	1.9	4
115	An unusual case of high hyperdiploid childhood ALL with cryptic BCR/ABL1 rearrangement. Molecular Cytogenetics, 2014, 7, 72.	0.9	4
116	The effect of the Bacillus thuringiensis exotoxin on the fine nucleolar morphology and ultrastructure. Experimental Cell Research, 1974, 87, 351-358.	2.6	3
117	Autoantibodies in hypertrophic cardiomyopathy and their clinical significance. European Heart Journal, 1987, 8, 773-778.	2.2	3
118	Internalization of triiodothyronine-bovine serum albumin-colloidal gold complexes in human peripheral leukocytes. Experientia, 1987, 43, 1119-1120.	1.2	3
119	Processing of free cells for electron microscopy using a fibrin clot. Acta Histochemica, 1998, 100, 309-313.	1.8	3
120	Non-isotopic detection of nucleolar transcription in pre-implantation mouse embryos. Reproduction, Nutrition, Development, 1998, 38, 117-126.	1.9	3
121	Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63. Chromosome Research, 2008, 16, 1177-1192.	2.2	3
122	Organization of the amplified type I interferon gene cluster and associated chromosome regions in the interphase nucleus of human osteosarcoma cells. Chromosome Research, 2009, 17, 305-319.	2.2	3
123	Replication timing of pseudo-NORs. Journal of Structural Biology, 2011, 173, 213-218.	2.8	3
124	Searching for active ribosomal genes. Progress in Molecular and Subcellular Biology, 2004, 35, 23-56.	1.6	3
125	Ultrastructural Characterization of RPA-Containing Domains in Nuclei Assembled in Xenopus Egg Extracts. Journal of Structural Biology, 2000, 129, 211-217.	2.8	2
126	Exploring some of the physico-chemical properties of the LAMMER protein kinase DOA of Drosophila. Fly, 2009, 3, 130-142.	1.7	2

#	Article	IF	CITATIONS
127	Importance of molecular cell biology investigations in human medicine in the story of the Hutchinson-Gilford progeria syndrome. Interdisciplinary Toxicology, 2010, 3, 89-93.	1.0	2
128	The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction. Cells, 2021, 10, 297.	4.1	2
129	An "Eclipse―over the Cell Nucleus at the Turn of the Century. Journal of Structural Biology, 2000, 129, 101.	2.8	1
130	Effect of histone on the nucleolar morphology of cells cultured in vitro. Cell and Tissue Research, 1973, 138, 273-282.	2.9	0
131	The ultrastructural demonstration of DNA filaments in nucleolonemata. The Histochemical Journal, 1983, 15, 308-309.	0.6	0
132	Human autoantibodies identify a protein in dense fibrillar and granular components of the nucleolus. Acta Histochemica, 1999, 101, 157-166.	1.8	0
133	Overexpression of v-myb oncogene or c-myb proto-oncogene in insect cells: characterization of newly induced nucleolus-like structures accumulating myb protein. International Journal of Molecular Medicine, 2002, 9, 547.	4.0	0
134	Nuclear visions enhanced: chromatin structure, organization and dynamics. EMBO Reports, 2011, 12, 748-750.	4.5	0
135	Chromatin organization, structure and dynamics. Nucleus, 2011, 2, 331-331.	2.2	0
136	Gold Nanoparticles for High Resolution Imaging in Modern Immunocytochemistry. Fundamental Biomedical Technologies, 2014, , 189-206.	0.2	0