
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3632069/publications.pdf Version: 2024-02-01

FENC CAO

#	Article	IF	CITATIONS
1	Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.	9.9	85
2	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303.	1.4	3
3	Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device. Energy and Environmental Science, 2022, 15, 855-865.	30.8	62
4	Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule, 2022, 6, 240-257.	24.0	128
5	Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch. ACS Energy Letters, 2022, 7, 550-559.	17.4	23
6	Interfacial engineering from material to solvent: A mechanistic understanding on stabilizing <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si0001.svg"><mml:mi>l±</mml:mi></mml:math> -formamidinium lead triiodide perovskite photovoltaics. Nano Energy, 2022, 94, 106924.	16.0	13
7	Facet Orientation and Intermediate Phase Regulation via a Green Antisolvent for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	12
8	Highâ€Performance All‧mallâ€Molecule Organic Solar Cells Enabled by Regioâ€Isomerization of Noncovalently Conformational Locks. Advanced Functional Materials, 2022, 32, .	14.9	34
9	Thermally Activated Reverse Electron Transfer Limits Carrier Generation Efficiency in PM6:Y6 Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	9
10	Light-Emitting Diodes Based on Two-Dimensional Nanoplatelets. Energy Material Advances, 2022, 2022, .	11.0	26
11	Manipulating molecular aggregation and crystalline behavior of Aâ€DA'Dâ€A type acceptors by side chain engineering in organic solar cells. Aggregate, 2022, 3, .	9.9	16
12	Non-fused medium bandgap electron acceptors for efficient organic photovoltaics. Journal of Energy Chemistry, 2022, 70, 576-582.	12.9	22
13	New insights in construction of three-dimensional donor/acceptor interface for high performance perovskite solar cells the preparation of wolf tooth stick-like TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 128958.	4.7	4
14	Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nature Communications, 2022, 13, 2046.	12.8	41
15	Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications, 2022, 13, 2598.	12.8	113
16	Reconfigurable self-powered imaging photodetectors by reassembling and disassembling ZnO/perovskite heterojunctions. Journal of Materials Chemistry C, 2022, 10, 8922-8930.	5.5	15
17	Natural Product Betulinâ€Based Insulating Polymer Filler in Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	7
18	A-Ï€-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%. Science China Chemistry, 2022, 65, 1374-1382.	8.2	53

#	Article	IF	CITATIONS
19	Fluorinated Peryleneâ€Diimides: Cathode Interlayers Facilitating Carrier Collection for Highâ€Performance Organic Solar Cells. Advanced Materials, 2022, 34, .	21.0	62
20	Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science, 2022, 377, 307-310.	12.6	121
21	Blueshifting the Absorption of a Smallâ€Molecule Donor and Using it as the Third Component to Achieve Highâ€Efficiency Ternary Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	8
22	Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nature Photonics, 2022, 16, 575-581.	31.4	138
23	Interplay between charge separation and hole back transfer determines the efficiency of non-fullerene organic solar cells with low energy level offset. Organic Electronics, 2022, 108, 106601.	2.6	4
24	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	19.5	118
25	Dynamic Redistribution of Mobile Ions in Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2007596.	14.9	23
26	The atomic-level structure of bandgap engineered double perovskite alloys Cs ₂ AgIn _{1â^'<i>x</i>} Fe _{<i>x</i>} Cl ₆ . Chemical Science, 2021, 12, 1730-1735.	7.4	34
27	Fluorinated End Group Enables Highâ€Performance Allâ€Polymer Solar Cells with Nearâ€Infrared Absorption and Enhanced Device Efficiency over 14%. Advanced Energy Materials, 2021, 11, 2003171.	19.5	89
28	Carrier Dynamics and Evaluation of Lasing Actions in Halide Perovskites. Trends in Chemistry, 2021, 3, 34-46.	8.5	47
29	Metal halide perovskites for light-emitting diodes. Nature Materials, 2021, 20, 10-21.	27.5	800
30	Revealing Morphology Evolution in Highly Efficient Bulk Heterojunction and Pseudoâ€Planar Heterojunction Solar Cells by Additives Treatment. Advanced Energy Materials, 2021, 11, 2003390.	19.5	106
31	Combining Two-Layer Semi-Three-Dimensional Reconstruction and Multi-Wavelength Image Fusion for Functional Diffuse Optical Tomography. IEEE Transactions on Computational Imaging, 2021, 7, 1055-1068.	4.4	4
32	A universal method for constructing high efficiency organic solar cells with stacked structures. Energy and Environmental Science, 2021, 14, 2314-2321.	30.8	75
33	Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nature Communications, 2021, 12, 361.	12.8	268
34	Highly efficient fused ring electron acceptors based on a new undecacyclic core. Materials Chemistry Frontiers, 2021, 5, 2001-2006.	5.9	3
35	Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nature Communications, 2021, 12, 644.	12.8	109
36	Optimizing the Charge Carrier and Light Management of Nonfullerene Acceptors for Efficient Organic Solar Cells with Small Nonradiative Energy Losses. Solar Rrl, 2021, 5, 2100008.	5.8	20

#	Article	IF	CITATIONS
37	Effect of alloying on the dynamics of coherent acoustic phonons in bismuth double perovskite single crystals. Optics Express, 2021, 29, 7948.	3.4	4
38	Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Science Advances, 2021, 7, .	10.3	98
39	High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. Journal of the American Chemical Society, 2021, 143, 2665-2670.	13.7	245
40	Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule, 2021, 5, 618-630.	24.0	99
41	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	24.0	228
42	Highâ€Performance Noncovalently Fusedâ€Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and Endâ€Group Engineering. Angewandte Chemie, 2021, 133, 12583-12589.	2.0	31
43	Highâ€Performance Noncovalently Fusedâ€Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and Endâ€Group Engineering. Angewandte Chemie - International Edition, 2021, 60, 12475-12481.	13.8	155
44	Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6, 605-613.	39.5	1,307
45	Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule, 2021, 5, 1246-1266.	24.0	91
46	Ï€-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS Applied Materials & Interfaces, 2021, 13, 22531-22539.	8.0	22
47	Accurate photovoltaic measurement of organic cells for indoor applications. Joule, 2021, 5, 1016-1023.	24.0	52
48	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	8.2	51
49	Color-Stable Blue Light-Emitting Diodes Enabled by Effective Passivation of Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 6041-6047.	4.6	21
50	High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr ₃ Nanocrystals with Rationally Designed Aromatic Ligands. ACS Energy Letters, 2021, 6, 2395-2403.	17.4	67
51	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	39.5	235
52	Sideâ€Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fusedâ€Ring Electron Acceptors. Angewandte Chemie - International Edition, 2021, 60, 17720-17725.	13.8	113
53	Impact of Amine Additives on Perovskite Precursor Aging: A Case Study of Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 5836-5843.	4.6	6
54	Sideâ€Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fusedâ€Ring Electron Acceptors. Angewandte Chemie, 2021, 133, 17861-17866.	2.0	10

#	Article	IF	CITATIONS
55	Carrier Mobility Dynamics under Actual Working Conditions of Organic Solar Cells. Journal of Physical Chemistry C, 2021, 125, 14567-14575.	3.1	3
56	Aligning Transition Dipole Moment toward Light Amplification and Polarized Emission in Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100984.	7.3	4
57	Non-fullerene acceptor photostability and its impact on organic solar cell lifetime. Cell Reports Physical Science, 2021, 2, 100498.	5.6	35
58	Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.	31.4	136
59	Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nature Communications, 2021, 12, 4899.	12.8	30
60	Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nature Communications, 2021, 12, 4831.	12.8	56
61	In Situ Optical Studies on Morphology Formation in Organic Photovoltaic Blends. Small Methods, 2021, 5, e2100585.	8.6	21
62	Enhancing the Photovoltaic Performance of Triplet Acceptors Enabled by Sideâ€Chain Engineering. Solar Rrl, 2021, 5, 2100522.	5.8	12
63	Leadâ€Free Double Perovskite Cs ₂ AgBiBr ₆ : Fundamentals, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2105898.	14.9	166
64	The role of charge recombination to triplet excitons in organic solar cells. Nature, 2021, 597, 666-671.	27.8	225
65	Degradation and self-repairing in perovskite light-emitting diodes. Matter, 2021, 4, 3710-3724.	10.0	51
66	Organic nanocrystals induced surface passivation towards high-efficiency and stable perovskite solar cells. Nano Energy, 2021, 89, 106445.	16.0	19
67	Reversible Ionic Polarization in Metal Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 283-289.	3.1	2
68	Spacer Cation Alloying in Ruddlesden–Popper Perovskites for Efficient Red Lightâ€Emitting Diodes with Precisely Tunable Wavelengths. Advanced Materials, 2021, 33, e2104381.	21.0	41
69	A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nature Energy, 2021, 6, 1045-1053.	39.5	230
70	Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902650.	19.5	516
71	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie, 2020, 132, 4128-4134.	2.0	8
72	Highâ€Performance Perovskite Lightâ€Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation. Angewandte Chemie - International Edition, 2020, 59, 4099-4105.	13.8	130

#	Article	IF	CITATIONS
73	Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation. Advanced Materials, 2020, 32, e1906324.	21.0	312
74	Reducing Voltage Losses in the A-DA′D-A Acceptor-Based Organic Solar Cells. CheM, 2020, 6, 2147-2161.	11.7	150
75	Deciphering the Role of Chalcogen-Containing Heterocycles in Nonfullerene Acceptors for Organic Solar Cells. ACS Energy Letters, 2020, 5, 3415-3425.	17.4	73
76	Ultrathin Singleâ€Crystalline 2D Perovskite Photoconductor for Highâ€Performance Narrowband and Wide Linear Dynamic Range Photodetection. Small, 2020, 16, e2005626.	10.0	26
77	Allâ€Polymer Solar Cells with over 12% Efficiency and a Small Voltage Loss Enabled by a Polymer Acceptor Based on an Extended Fused Ring Core. Advanced Energy Materials, 2020, 10, 2001408.	19.5	55
78	Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Science China Chemistry, 2020, 63, 1785-1792.	8.2	32
79	Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy, 2020, 78, 105272.	16.0	132
80	Efficient and Highâ€Luminance Perovskite Lightâ€Emitting Diodes Based on CsPbBr ₃ Nanocrystals Synthesized from a Dualâ€Purpose Organic Lead Source. Small, 2020, 16, e2003939.	10.0	18
81	Effect of the Energy Offset on the Charge Dynamics in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 43984-43991.	8.0	19
82	A Narrowâ€Bandgap nâ€Type Polymer with an Acceptor–Acceptor Backbone Enabling Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2020, 32, e2004183.	21.0	184
83	Intermediate-phase-assisted low-temperature formation of $\hat{1}^3$ -CsPbI3 films for high-efficiency deep-red light-emitting devices. Nature Communications, 2020, 11, 4736.	12.8	50
84	Single-emissive-layer all-perovskite white light-emitting diodes employing segregated mixed halide perovskite crystals. Chemical Science, 2020, 11, 11338-11343.	7.4	18
85	Nearâ€Infrared Lightâ€Responsive Cuâ€Doped Cs ₂ AgBiBr ₆ . Advanced Functional Materials, 2020, 30, 2005521.	14.9	56
86	Two Compatible Polymer Donors Enabling Ternary Organic Solar Cells with a Small Nonradiative Energy Loss and Broad Composition Tolerance. Solar Rrl, 2020, 4, 2000396.	5.8	22
87	Thermal-induced interface degradation in perovskite light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 15079-15085.	5.5	30
88	From Generation to Extraction: A Time-Resolved Investigation of Photophysical Processes in Non-fullerene Organic Solar Cells. Journal of Physical Chemistry C, 2020, 124, 21283-21292.	3.1	8
89	Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nature Communications, 2020, 11, 4165.	12.8	217
90	Magnetizing lead-free halide double perovskites. Science Advances, 2020, 6, .	10.3	56

#	Article	IF	CITATIONS
91	Emerging Approaches in Enhancing the Efficiency and Stability in Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002746.	19.5	124
92	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 15043-15049.	13.8	77
93	Dimensional Tailoring of Ultrahigh Vacuum Annealing-Assisted Quantum Wells for the Efficiency Enhancement of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 24965-24970.	8.0	2
94	Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy and Environmental Science, 2020, 13, 2459-2466.	30.8	324
95	Effect of Crystal Symmetry on the Spin States of Fe ³⁺ and Vibration Modes in Lead-free Double-Perovskite Cs ₂ AgBi(Fe)Br ₆ . Journal of Physical Chemistry Letters, 2020, 11, 4873-4878.	4.6	11
96	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie, 2020, 132, 15153-15159.	2.0	11
97	Leadâ€Free Halide Double Perovskite Cs ₂ AgBiBr ₆ with Decreased Band Gap. Angewandte Chemie - International Edition, 2020, 59, 15191-15194.	13.8	80
98	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	24.0	344
99	Leadâ€Free Halide Double Perovskite Cs ₂ AgBiBr ₆ with Decreased Band Gap. Angewandte Chemie, 2020, 132, 15303-15306.	2.0	34
100	Double Active Layers Constructed with Halide Perovskite and Quantum Dots for Broadband Photodetection. Advanced Optical Materials, 2020, 8, 2000557.	7.3	19
101	Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nature Electronics, 2020, 3, 156-164.	26.0	126
102	Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.	21.0	1,407
103	Diluted Organic Semiconductors in Photovoltaics. Solar Rrl, 2020, 4, 2000261.	5.8	11
104	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369, 96-102.	12.6	461
105	Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nature Communications, 2020, 11, 891.	12.8	83
106	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Based on Potassium Passivated Nanocrystals. Advanced Functional Materials, 2020, 30, 1908760.	14.9	134
107	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	39.5	894
108	Barrierless Free Charge Generation in the Highâ€Performance PM6:Y6 Bulk Heterojunction Nonâ€Fullerene Solar Cell. Advanced Materials, 2020, 32, e1906763.	21.0	258

#	Article	IF	CITATIONS
109	A disorder-free conformation boosts phonon and charge transfer in an electron-deficient-core-based non-fullerene acceptor. Journal of Materials Chemistry A, 2020, 8, 8566-8574.	10.3	37
110	Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Science China Chemistry, 2020, 63, 1159-1168.	8.2	92
111	Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nature Communications, 2019, 10, 3624.	12.8	104
112	Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- <i>b</i>]thiophene-Based Electron Acceptors for Efficient Organic Solar Cells with Reduced Energy Losses. ACS Applied Materials & Interfaces, 2019, 11, 35193-35200.	8.0	7
113	Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nature Energy, 2019, 4, 768-775.	39.5	407
114	Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component. Nano Letters, 2019, 19, 5053-5061.	9.1	47
115	Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571, 245-250.	27.8	1,103
116	Toward Quantitative Near Infrared Brain Functional Imaging: Lock-In Photon Counting Instrumentation Combined With Tomographic Reconstruction. IEEE Access, 2019, 7, 86829-86842.	4.2	10
117	Highâ€Quality Ruddlesden–Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations. Advanced Materials, 2019, 31, e1904243.	21.0	35
118	A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy and Environmental Science, 2019, 12, 3328-3337.	30.8	337
119	Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale, 2019, 11, 2109-2120.	5.6	211
120	Thermochromic Leadâ€Free Halide Double Perovskites. Advanced Functional Materials, 2019, 29, 1807375.	14.9	120
121	Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots. Small, 2019, 15, e1804947.	10.0	23
122	Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10, 570.	12.8	377
123	Control of Donor–Acceptor Photophysics through Structural Modification of a "Twisting― Push–Pull Molecule. Chemistry of Materials, 2019, 31, 6860-6869.	6.7	15
124	Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nature Communications, 2019, 10, 2818.	12.8	129
125	Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 21766-21774.	8.0	82
126	Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515.	12.8	1,431

#	Article	IF	CITATIONS
127	Spectral-Stable Blue Emission from Moisture-Treated Low-Dimensional Lead Bromide-Based Perovskite Films. ACS Photonics, 2019, 6, 1728-1735.	6.6	21
128	Surface Chlorination of ZnO for Perovskite Solar Cells with Enhanced Efficiency and Stability. Solar Rrl, 2019, 3, 1900154.	5.8	37
129	Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 3171-3175.	4.6	35
130	The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1642-1652.	5.9	12
131	14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference. Journal of the American Chemical Society, 2019, 141, 7743-7750.	13.7	379
132	Stable, High‣ensitivity and Fastâ€Response Photodetectors Based on Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Films. Advanced Optical Materials, 2019, 7, 1801732.	7.3	126
133	Metal Doping/Alloying of Cesium Lead Halide Perovskite Nanocrystals and their Applications in Lightâ€Emitting Diodes with Enhanced Efficiency and Stability. Israel Journal of Chemistry, 2019, 59, 695-707.	2.3	23
134	A New Acceptor for Highly Efficient Organic Solar Cells. Joule, 2019, 3, 908-909.	24.0	33
135	Fundamentals of Solar Cells and Light-Emitting Diodes. , 2019, , 1-35.		4
136	Structural and Functional Diversity in Leadâ€Free Halide Perovskite Materials. Advanced Materials, 2019, 31, e1900326.	21.0	198
137	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	31.4	970
138	Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors. Science China Chemistry, 2019, 62, 897-903.	8.2	10
139	Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5, 100028.	4.6	86
140	A Kalman-based tomographic scheme for directly reconstructing activation levels of brain function. Optics Express, 2019, 27, 3229.	3.4	12
141	Pulsed Terahertz Emission from Solution-Processed Lead Iodide Perovskite Films. ACS Photonics, 2019, 6, 1175-1181.	6.6	21
142	Reliability of charge carrier recombination data determined with charge extraction methods. Journal of Applied Physics, 2019, 126, .	2.5	13
143	All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nature Communications, 2019, 10, 5393.	12.8	273
144	Experimentally Validated Hopping-Transport Model for Energetically Disordered Organic Semiconductors. Physical Review Applied, 2019, 12, .	3.8	28

#	Article	IF	CITATIONS
145	Efficient CsPbBr ₃ Perovskite Lightâ€Emitting Diodes Enabled by Synergetic Morphology Control. Advanced Optical Materials, 2019, 7, 1801534.	7.3	117
146	Defect Passivation for Red Perovskite Light-Emitting Diodes with Improved Brightness and Stability. Journal of Physical Chemistry Letters, 2019, 10, 380-385.	4.6	55
147	Sparsity-regularized approaches to directly reconstructing hemodynamic response in brain functional diffuse optical tomography. Applied Optics, 2019, 58, 863.	1.8	4
148	Thermochromic Lead-free Halide Double Perovskites. , 2019, , .		0
149	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	21.0	172
150	Critical Role of Molecular Electrostatic Potential on Charge Generation in Organic Solar Cells. Chinese Journal of Chemistry, 2018, 36, 491-494.	4.9	163
151	Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites. ACS Applied Materials & Interfaces, 2018, 10, 16225-16230.	8.0	66
152	Organic–Inorganic Hybrid Ruddlesden–Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2018, 9, 2251-2258.	4.6	59
153	The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells. Materials Horizons, 2018, 5, 206-221.	12.2	122
154	Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nature Communications, 2018, 9, 608.	12.8	322
155	Organic solar cells based on non-fullerene acceptors. Nature Materials, 2018, 17, 119-128.	27.5	2,315
156	Enhanced photocatalytic efficiency of C ₃ N ₄ /BiFeO ₃ heterojunctions: the synergistic effects of band alignment and ferroelectricity. Physical Chemistry Chemical Physics, 2018, 20, 3648-3657.	2.8	57
157	Long Electron–Hole Diffusion Length in Highâ€Quality Leadâ€Free Double Perovskite Films. Advanced Materials, 2018, 30, e1706246.	21.0	242
158	Fullereneâ€Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresisâ€Free, and Stable Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700435.	5.1	101
159	Simultaneously Achieved High Openâ€Circuit Voltage and Efficient Charge Generation by Fineâ€Tuning Chargeâ€Transfer Driving Force in Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704507.	14.9	180
160	Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Advanced Materials, 2018, 30, e1804215.	21.0	161
161	Suppression of Recombination Energy Losses by Decreasing the Energetic Offsets in Perylene Diimide-Based Nonfullerene Organic Solar Cells. ACS Energy Letters, 2018, 3, 2729-2735.	17.4	50
162	Oriented Quasiâ€2D Perovskites for High Performance Optoelectronic Devices. Advanced Materials, 2018, 30, e1804771.	21.0	268

#	Article	IF	CITATIONS
163	Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off. Scientific Reports, 2018, 8, 15496.	3.3	42
164	Efficient non-fullerene organic solar cells employing sequentially deposited donor–acceptor layers. Journal of Materials Chemistry A, 2018, 6, 18225-18233.	10.3	49
165	Charge Generation via Relaxed Charge-Transfer States in Organic Photovoltaics by an Energy-Disorder-Driven Entropy Gain. Journal of Physical Chemistry C, 2018, 122, 12640-12646.	3.1	24
166	Light-induced degradation of fullerenes in organic solar cells: a case study on TQ1:PC ₇₁ BM. Journal of Materials Chemistry A, 2018, 6, 11884-11889.	10.3	27
167	Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800667.	7.3	91
168	Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials. Science China Chemistry, 2018, 61, 1328-1337.	8.2	177
169	A minimal non-radiative recombination loss for efficient non-fullerene all-small-molecule organic solar cells with a low energy loss of 0.54ÂeV and high open-circuit voltage of 1.15 V. Journal of Materials Chemistry A, 2018, 6, 13918-13924.	10.3	62
170	Precisely Controlling the Grain Sizes with an Ammonium Hypophosphite Additive for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1802320.	14.9	65
171	High Performance and Stable Allâ€Inorganic Metal Halide Perovskiteâ€Based Photodetectors for Optical Communication Applications. Advanced Materials, 2018, 30, e1803422.	21.0	342
172	Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses. Advanced Energy Materials, 2018, 8, 1801352.	19.5	319
173	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	27.5	701
174	Aligned and Graded Typeâ€II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	19.5	247
175	Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization. Chemical Communications, 2018, 54, 6887-6890.	4.1	11
176	Defects engineering for high-performance perovskite solar cells. Npj Flexible Electronics, 2018, 2, .	10.7	334
177	Efficient perovskite light-emitting diodes based on a solution-processed tin dioxide electron transport layer. Journal of Materials Chemistry C, 2018, 6, 6996-7002.	5.5	25
178	A Nearâ€Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Advanced Science, 2018, 5, 1800755.	11.2	93
179	Efficient light-emitting diodes based on in-situ self-assembled Perovskite nanocrystals. , 2018, , .		0
180	Efficient light-emitting diodes based on in-situ self-assembled perovskite nanocrystals. Journal of Photonics for Energy, 2018, 8, 1.	1.3	12

#	Article	IF	CITATIONS
181	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	38.1	99
182	Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 462-473.	6.7	35
183	Efficient Semitransparent Organic Solar Cells with Tunable Color enabled by an Ultralowâ€Bandgap Nonfullerene Acceptor. Advanced Materials, 2017, 29, 1703080.	21.0	325
184	Inhomogeneous degradation in metal halide perovskites. Applied Physics Letters, 2017, 111, .	3.3	19
185	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	21.0	360
186	Fullereneâ€Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 2016, 28, 4734-4739.	21.0	1,698
187	Highly Efficient Perovskite Nanocrystal Lightâ€Emitting Diodes Enabled by a Universal Crosslinking Method. Advanced Materials, 2016, 28, 3528-3534.	21.0	782
188	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	31.4	1,535
189	Extended Intermolecular Interactions Governing Photocurrent–Voltage Relations in Ternary Organic Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 3936-3944.	4.6	11
190	Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34446-34454.	8.0	36
191	Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nature Energy, 2016, 1, .	39.5	1,167
192	Band structure engineering in organic semiconductors. Science, 2016, 352, 1446-1449.	12.6	239
193	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	21.0	102
194	Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. Journal of Materials Chemistry C, 2016, 4, 3898-3904.	5.5	179
195	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5890-5897.	10.3	219
196	Inverted all-polymer solar cells based on a quinoxaline–thiophene/naphthalene-diimide polymer blend improved by annealing. Journal of Materials Chemistry A, 2016, 4, 3835-3843.	10.3	57
197	Morphology, Temperature, and Field Dependence of Charge Separation in High-Efficiency Solar Cells Based on Alternating Polyquinoxaline Copolymer. Journal of Physical Chemistry C, 2016, 120, 4219-4226.	3.1	22
198	Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their Implications on Design Rules. Advanced Materials Interfaces, 2015, 2, 1500204.	3.7	34

#	Article	IF	CITATIONS
199	The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTT â€T:PC ₇₁ BM. Advanced Materials, 2015, 27, 3868-3873.	21.0	46
200	Temperature Dependence of Charge Carrier Generation in Organic Photovoltaics. Physical Review Letters, 2015, 114, 128701.	7.8	96
201	A dual ternary system for highly efficient ITO-free inverted polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18365-18371.	10.3	23
202	Electrophoretic deposited oxide thin films as charge transporting interlayers for solution-processed optoelectronic devices: the case of ZnO nanocrystals. RSC Advances, 2015, 5, 8216-8222.	3.6	9
203	Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayer. Journal of Materials Chemistry A, 2015, 3, 504-508.	10.3	15
204	Ethanedithiol Treatment of Solutionâ€Processed ZnO Thin Films: Controlling the Intragap States of Electron Transporting Interlayers for Efficient and Stable Inverted Organic Photovoltaics. Advanced Energy Materials, 2015, 5, 1401606.	19.5	157
205	Energetics at Doped Conjugated Polymer/Electrode Interfaces. Advanced Materials Interfaces, 2015, 2, 1400403.	3.7	28
206	Effects of side groups on the kinetics of charge carrier recombination in dye molecule-doped multilayer organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 46-50.	5.5	4
207	Disodium Edetate As a Promising Interfacial Material for Inverted Organic Solar Cells and the Device Performance Optimization. ACS Applied Materials & amp; Interfaces, 2014, 6, 20569-20573.	8.0	23
208	Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials. Advanced Energy Materials, 2014, 4, 1400359.	19.5	98
209	Trap-Induced Losses in Hybrid Photovoltaics. ACS Nano, 2014, 8, 3213-3221.	14.6	84
210	Lowâ€Temperature Combustionâ€5ynthesized Nickel Oxide Thin Films as Holeâ€Transport Interlayers for Solutionâ€Processed Optoelectronic Devices. Advanced Energy Materials, 2014, 4, 1301460.	19.5	110
211	Charge generation in polymer–fullerene bulk-heterojunction solar cells. Physical Chemistry Chemical Physics, 2014, 16, 20291-20304.	2.8	190
212	Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 17676-17682.	10.3	48
213	A New Tetracyclic Lactam Building Block for Thick, Broad-Bandgap Photovoltaics. Journal of the American Chemical Society, 2014, 136, 11578-11581.	13.7	73
214	Synthesis of Unstable Colloidal Inorganic Nanocrystals through the Introduction of a Protecting Ligand. Nano Letters, 2014, 14, 3117-3123.	9.1	40
215	The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy and Environmental Science, 2013, 6, 2020.	30.8	108
216	Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Nature Communications, 2012, 3, 1191.	12.8	85

#	Article	IF	CITATIONS
217	Quantifying Loss Mechanisms in Polymer:Fullerene Photovoltaic Devices. Advanced Energy Materials, 2012, 2, 956-961.	19.5	18
218	Conjugated Zwitterionic Polyelectrolyte as the Charge Injection Layer for High-Performance Polymer Light-Emitting Diodes. Journal of the American Chemical Society, 2011, 133, 683-685.	13.7	189
219	Formation of Wellâ€Ordered Heterojunctions in Polymer:PCBM Photovoltaic Devices. Advanced Functional Materials, 2011, 21, 139-146.	14.9	78
220	Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar Cells: A Transient Photocurrent and Photovoltage Study. Advanced Functional Materials, 2011, 21, 1419-1431.	14.9	241
221	Enhanced charge transport by incorporating additional thiophene units in the poly(fluorene-thienyl-benzothiadiazole) polymer. Organic Electronics, 2011, 12, 461-471.	2.6	21
222	Entirely solution-processed write-once-read-many-times memory devices and their operation mechanism. Organic Electronics, 2011, 12, 1271-1274.	2.6	28
223	Memristive devices based on solutionâ€processed ZnO nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 484-487.	1.8	38
224	Low-power write-once-read-many-times memory devices. Applied Physics Letters, 2010, 97, .	3.3	29
225	Formation of Nanopatterned Polymer Blends in Photovoltaic Devices. Nano Letters, 2010, 10, 1302-1307.	9.1	248
226	Steplike magnetocapacitance and dielectric relaxation in spin frustrated Ca3Co2O6. Journal of Applied Physics, 2008, 104, 054111.	2.5	9
227	Application of weak ferromagnetic BiFeO3 films as the photoelectrode material under visible-light irradiation. Applied Physics Letters, 2007, 91, .	3.3	61
228	Preparation of aligned Ca3Co2O6 nanorods and their steplike magnetization. Applied Physics Letters, 2007, 91, .	3.3	23
229	Charge order suppression and weak ferromagnetism in La1â^•3Sr2â^•3FeO3 nanoparticles. Applied Physics Letters, 2007, 91, .	3.3	31
230	Charge-order breaking and ferromagnetism in La0.4Ca0.6MnO3 nanoparticles. Applied Physics Letters, 2007, 91, .	3.3	95
231	Surface phase separation in nanosized charge-ordered manganites. Applied Physics Letters, 2007, 90, 082508.	3.3	115
232	Visibleâ€Light Photocatalytic Properties of Weak Magnetic BiFeO ₃ Nanoparticles. Advanced Materials, 2007, 19, 2889-2892.	21.0	837
233	Effects of substrate temperature on Bi0.8La0.2FeO3 thin films prepared by pulsed laser deposition. Thin Solid Films, 2007, 515, 5366-5373.	1.8	14
234	Synthesis and magnetic properties of Pr0.57Ca0.43MnO3 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 136, 96-100.	3.5	18

#	Article	IF	CITATIONS
235	Preparation and photoabsorption characterization of BiFeO3 nanowires. Applied Physics Letters, 2006, 89, 102506.	3.3	335
236	Thermal stability and interfacial properties of ZrAlxSiyOz films prepared by pulse-laser deposition. Journal of Applied Physics, 2006, 100, 074109.	2.5	1
237	PHASE SEPARATION ENHANCED INTERFACIAL REACTIONS IN COMPLEX HIGH-k DIELECTRIC FILMS. Integrated Ferroelectrics, 2006, 86, 13-19.	0.7	1
238	Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique. Applied Optics, 2002, 41, 7346.	2.1	31