List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3631100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy. Physical Review B, 2007, 76, .	3.2	81
2	Experimental verification of the reversibility window concept in binary As-Se glasses subjected to a long-term physical aging. Physical Review B, 2008, 78, .	3.2	67
3	Atomistic model of physical ageing in Se-rich As–Se glasses. Philosophical Magazine, 2007, 87, 4323-4334.	1.6	60
4	Step-wise kinetics of natural physical ageing in arsenic selenide glasses. Journal of Physics Condensed Matter, 2012, 24, 505106.	1.8	54
5	Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS. Philosophical Magazine, 2010, 90, 4489-4501.	1.6	52
6	Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool. Nanoscale Research Letters, 2015, 10, 77.	5.7	48
7	Oxygen incorporation into GST phase-change memory matrix. Applied Surface Science, 2015, 332, 533-541.	6.1	47
8	Physical ageing effects in vitreous arsenic selenides. Solid State Communications, 2006, 137, 67-69.	1.9	44
9	Incorporation of Ga into the structure of Ge–Se glasses. Materials Chemistry and Physics, 2013, 138, 909-916.	4.0	43
10	Gamma-irradiation-induced physical ageing in As–Se glasses. Journal of Non-Crystalline Solids, 2006, 352, 4960-4963.	3.1	42
11	Structural paradigm of Se-rich Ge–Se glasses by high-resolution x-ray photoelectron spectroscopy. Journal of Applied Physics, 2009, 105, 103704.	2.5	42
12	Compositional dependences of average positron lifetime in binary As–S/Se glasses. Physica B: Condensed Matter, 2012, 407, 652-655.	2.7	34
13	Physical ageing in glassy As–Se induced by above-bandgap photoexposure. Solid State Communications, 2008, 145, 423-426.	1.9	29
14	Long-term ageing behaviour in Ge–Se glasses. Journal of Materials Science, 2009, 44, 3962-3967.	3.7	29
15	Long-term physical ageing in As–Se glasses with short chalcogen chains. Journal of Physics Condensed Matter, 2008, 20, 245101.	1.8	27
16	Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements. Physical Review B, 2008, 77, .	3.2	26
17	Effect of gamma-irradiation on the optical properties of GexAs40â^'xS60 glasses. Physica B: Condensed Matter, 1999, 271, 242-247.	2.7	24
18	A Study of Reversible Î ³ -Induced Structural Transformations in Vitreous Ge23.5Sb11.8S64.7by High-Resolution X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 22930-22934.	2.6	24

#	Article	IF	CITATIONS
19	Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons. Journal of Materials Research, 2011, 26, 2420-2427.	2.6	24
20	Influence of phase separation on the devitrification of 45S5 bioglass. Acta Biomaterialia, 2014, 10, 4878-4886.	8.3	24
21	Topology and chemical order in As Ge Se1â^2 glasses: A high-resolution X-ray photoelectron spectroscopy study. Journal of Non-Crystalline Solids, 2011, 357, 3454-3460.	3.1	23
22	Radiation effects in physical aging of binary As–S and As–Se glasses. Journal of Thermal Analysis and Calorimetry, 2011, 103, 213-218.	3.6	23
23	Temperature-dependent structural relaxation in As40Se60 glass. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3032-3036.	2.1	23
24	Microstructure and luminescent properties of Eu3+-activated MgGa2O4:Mn2+ ceramic phosphors. Journal of Advanced Ceramics, 2020, 9, 432-443.	17.4	23
25	Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number. Journal of Non-Crystalline Solids, 2012, 358, 163-167.	3.1	22
26	Physical aging of chalcogenide glasses. Inorganic Materials, 2010, 46, 911-913.	0.8	21
27	In search of energy landscape for network glasses. Applied Physics Letters, 2011, 98, .	3.3	21
28	Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy. Journal of Non-Crystalline Solids, 2013, 377, 49-53.	3.1	20
29	On the reversibility window in binary As–Se glasses. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 370, 504-508.	2.1	19
30	Optical signature of structural relaxation in glassy As10Se90. Journal of Non-Crystalline Solids, 2010, 356, 1149-1152.	3.1	19
31	Complex structural rearrangements in As-Se glasses. Journal of Chemical Physics, 2014, 140, 054505.	3.0	19
32	Cooperative rearranging region size and free volume in As–Se glasses. Journal of Physics Condensed Matter, 2009, 21, 075105.	1.8	18
33	Short-range order evolution in S-rich Ge–S glasses by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 2011, 357, 1797-1803.	3.1	18
34	Physical aging effects in selenide glasses accelerated by highly energetic Î ³ -irradiation. Journal of Non-Crystalline Solids, 2006, 352, 704-708.	3.1	17
35	High-energy γ-irradiation effect on physical ageing in Ge–Se glasses. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2958-2961.	1.4	17
36	Effect of Ga incorporation in the As30Se50Te20 glass. Journal of Non-Crystalline Solids, 2014, 398-399, 19-25.	3.1	17

#	Article	IF	CITATIONS
37	Study of Ga incorporation in glassy arsenic selenides by high-resolution XPS and EXAFS. Journal of Chemical Physics, 2015, 142, 184501.	3.0	17
38	Cooperativity Scaling and Free Volume in Plasticized Polylactide. Macromolecules, 2019, 52, 6107-6115.	4.8	17
39	Threshold restoration effects in γ-irradiated chalcogenide glasses. Journal of Non-Crystalline Solids, 2005, 351, 993-997.	3.1	16
40	Reversibility windows in selenide-based chalcogenide glasses. Physica B: Condensed Matter, 2008, 403, 3830-3837.	2.7	16
41	Influence of Bi on topological self-organization in arsenic and germanium selenide networks. Journal of Materials Chemistry C, 2013, 1, 6677.	5.5	16
42	Crystallization of Stoichiometric <scp>SbSI</scp> Glass. Journal of the American Ceramic Society, 2014, 97, 198-205.	3.8	16
43	Structural evolution of Ga-Ge-Te glasses by combined EXAFS and XPS analysis. Journal of Chemical Physics, 2013, 139, 054508.	3.0	15
44	Physical ageing of chalcogenide glasses. , 2014, , 209-264.		14
45	Chemical order in Ga or Sb modified germanium sulfide glasses around stoichiometry: High-resolution XPS and Raman studies. Journal of Non-Crystalline Solids, 2018, 499, 237-244.	3.1	14
46	Amorphous rigidification and cooperativity drop in semiâ^'crystalline plasticized polylactide. Polymer, 2020, 194, 122373.	3.8	14
47	Crossover between cooperative and fractal relaxation in complex glass-formers. Journal of Physics Condensed Matter, 2016, 28, 355101.	1.8	14
48	Pseudoâ€selfâ€organized topological phases in glassy selenides for IR photonics. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2572-2576.	0.8	13
49	Medium range order and structural relaxation in As–Se network glasses through FSDP analysis. Materials Chemistry and Physics, 2015, 153, 432-442.	4.0	13
50	Phenomenology of γ-irradiation-induced changes in optical properties of chalcogenide semiconductor glasses: A case study of binary arsenic sulfides. Journal of Non-Crystalline Solids, 2018, 498, 315-322.	3.1	13
51	Effect of Co 60 γ-irradiation on the optical properties of As–Ge–S glasses. Journal of Non-Crystalline Solids, 2003, 326-327, 130-134.	3.1	12
52	Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary <scp><scp>As–S</scp></scp> Glasses. Journal of the American Ceramic Society, 2012, 95, 1048-1055.	3.8	12
53	FSDP-related correlations in Î ³ -irradiated chalcogenide semiconductor glasses: The case of glassy arsenic trisulphide g-As2S3 revised. Journal of Physics and Chemistry of Solids, 2013, 74, 1721-1725.	4.0	12
54	Initial stage of physical ageing in network glasses. Philosophical Magazine, 2012, 92, 4182-4193.	1.6	11

#	Article	IF	CITATIONS
55	Comparative study of extended free-volume defects in As- and Ge-based glassy semiconductors: theoretical prediction and experimental probing with PAL technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 117-120.	0.8	11
56	Structural organization of As-rich selenide glasses. Solid State Communications, 2013, 165, 22-26.	1.9	11
57	Compositional trends of γ-induced optical changes observed in chalcogenide glasses of binary AsS system. Journal of Non-Crystalline Solids, 2014, 386, 95-99.	3.1	11
58	Structural features of spin-coated thin films of binary AsSâ^ chalcogenide glass system. Thin Solid Films, 2015, 589, 642-648.	1.8	11
59	Structural characterisation of tin fluorophosphate glasses doped with Er2O3. Journal of Commonwealth Law and Legal Education, 2016, 57, 27-31.	0.5	11
60	Comparative study of atomic arrangements in equiatomic GeSe and GeTe films before and after crystallization. Journal of Alloys and Compounds, 2016, 686, 273-280.	5.5	11
61	Physical ageing in vitreous As13.5Ge4.5Se82 modified by high-energy gamma-irradiation. Physica B: Condensed Matter, 2006, 371, 323-326.	2.7	10
62	Radiation-induced physical ageing of the structure of an arsenic–selenide glass. Journal of Physics and Chemistry of Solids, 2007, 68, 901-905.	4.0	10
63	EXAFS spectroscopic refinement of amorphous structures of evaporation-deposited Ge–Se films. Journal of Alloys and Compounds, 2015, 622, 189-193.	5.5	10
64	Structural origin of surface transformations in arsenic sulfide thin films upon UV-irradiation. Applied Surface Science, 2017, 394, 604-612.	6.1	10
65	On the problem of relaxation for radiation-induced optical effects in some ternary chalcogenide glasses. Radiation Effects and Defects in Solids, 2001, 153, 211-219.	1.2	9
66	Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses. Journal of Materials Research, 2012, 27, 2561-2567.	2.6	9
67	PAL signature of physical ageing in chalcogenide glasses. Physica Status Solidi (B): Basic Research, 2012, 249, 1017-1019.	1.5	9
68	Peculiarities of Ga and Te incorporation in glassy arsenic selenides. Journal of Non-Crystalline Solids, 2015, 429, 104-111.	3.1	9
69	Devitrification of Bi- and Ga-containing germanium-based chalcogenide glasses. Journal of Alloys and Compounds, 2016, 674, 207-217.	5.5	9
70	Near-IR emission of Er3+ ions in CsCl-Ga-Ge-S glasses excited by visible light. Optical Materials, 2017, 72, 195-200.	3.6	9
71	Kinetics of light-assisted physical ageing in chalcogenide glasses. Journal of Materials Science, 2014, 49, 2844-2852.	3.7	8
72	Natural physical aging in glassy As–Se: A comparative study of chaotic behavior with enhanced results analysis. Journal of Non-Crystalline Solids, 2014, 386, 8-13.	3.1	8

#	Article	IF	CITATIONS
73	Role of phase separation on the biological performance of 45S5 Bioglass®. Journal of Materials Science: Materials in Medicine, 2017, 28, 161.	3.6	8
74	Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS. Semiconductors, 2011, 45, 423-426.	0.5	7
75	Bond-changing structural rearrangement in glassy As3Se7 associated with long-term physical aging. Journal of Non-Crystalline Solids, 2013, 377, 43-45.	3.1	7
76	Wavelength Dependence of Photostructural Transformations in As2S3 Thin Films. Physics Procedia, 2013, 44, 75-81.	1.2	7
77	Photoinduced formation of Ag nanoparticles on the surface of As2S3/Ag thin bilayer. Materials Research Express, 2014, 1, 045025.	1.6	7
78	Optical and thermal properties of Sb/Bi-modified mixed Ge-Ga-Se-Te glasses. Journal of Alloys and Compounds, 2018, 750, 721-728.	5.5	7
79	Application of Positron Annihilation Lifetime Technique for Î ³ -Irradiation Stresses Study in Chalcogenide Vitreous Semiconductors. Advanced Engineering Materials, 2002, 4, 571-574.	3.5	6
80	Structural basis of temperature-dependent electrical resistance of evaporation-deposited amorphous GeSe film. Scripta Materialia, 2014, 86, 56-59.	5.2	6
81	Giant visible and infrared light attenuation effect in nanostructured narrow-bandgap glasses. Optics Letters, 2018, 43, 387.	3.3	6
82	Cluster modeling of quasiâ€adaptive phases in vitreous germanium selenides. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 921-924.	0.8	5
83	Topological controversies in the adaptability concept for glassy germanium selenides. Journal of Non-Crystalline Solids, 2011, 357, 479-482.	3.1	5
84	Electronic and atomic structure of amorphous thin films with high-resolution XPS: Examples of applications & amp; limitations. Journal of Non-Crystalline Solids, 2013, 377, 155-158.	3.1	5
85	Anisotropic loss of toughness with physical aging of work toughened polycarbonate. Polymer Engineering and Science, 2014, 54, 794-804.	3.1	5
86	Fine kinetics of natural physical ageing in glassy As10Se90. Physica B: Condensed Matter, 2014, 434, 21-25.	2.7	5
87	On the compositional diversity of physical aging kinetics in chalcogenide glasses. Journal of Non-Crystalline Solids, 2016, 437, 1-5.	3.1	5
88	The charge state of titanium ions in Pdâ€doped Ti: CMAS glass and glassâ€ceramics. Journal of the American Ceramic Society, 2017, 100, 2568-2581.	3.8	5
89	Parameterization of photobleaching and photodarkening in-situ kinetics in thermally deposited GeSe2 thin films. Thin Solid Films, 2021, 726, 138659.	1.8	5
90	Title is missing!. Ukrainian Journal of Physical Optics, 2002, 3, 134-143.	13.0	5

#	Article	IF	CITATIONS
91	Long-term natural physical aging in glassy Ge5Se95 as probed by combined NMR and PAL spectroscopy. Journal of Non-Crystalline Solids, 2014, 392-393, 1-5.	3.1	4
92	Positron annihilation lifetime spectroscopy (PALS) studies of gamma irradiated As2Se3 films used in MIR integrated photonics. Journal of Non-Crystalline Solids, 2017, 455, 29-34.	3.1	4
93	Structural characterization, optical and PAL spectroscopy studies of Er3+-doped Ge20Ga5Sb10S65 glasses. Optical Materials, 2020, 105, 109919.	3.6	4
94	Is the marginality of non-reversible heat flow in MDSC experiments a sufficient criterion for self-organization in network glass-formers?. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3043-3046.	0.8	3
95	Nature of Pd and Ti Metals in the Structure of <scp>CMAS</scp> Glass and Ceramics. Journal of the American Ceramic Society, 2014, 97, 1971-1978.	3.8	3
96	Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique. Materials Chemistry and Physics, 2015, 155, 76-82.	4.0	3
97	The Structure of Gaï£įSbï£įSe Glasses by Highâ€Resolution Xâ€Ray Photoelectron Spectroscopy. Physica Status Solidi (B): Basic Research, 2021, 258, 2100074.	1.5	3
98	Ovonic threshold switching induced local atomic displacements in amorphous Ge60Se40 film probed via in situ EXAFS under DC electric field. Journal of Non-Crystalline Solids, 2021, 568, 120955.	3.1	3
99	Title is missing!. Ukrainian Journal of Physical Optics, 2006, 7, 18-23.	13.0	3
100	Comment on "Molecular origin of aging of pure Se glass: Growth of inter-chain structural correlations, network compaction, and partial ordering―[J. Chem. Phys. 146, 224506 (2017)]. Journal of Chemical Physics, 2018, 148, 157101.	3.0	2
101	Role of Bi and Ga additives in the physical properties and structure of GeSe4-GeTe4 glasses. Materials Characterization, 2018, 142, 50-58.	4.4	2
102	On the temperature behavior of optical gap in arsenic sulphide glasses. Physica Status Solidi (B): Basic Research, 0, , .	1.5	2
103	Physical ageing in the above-bandgap photoexposured glassy arsenic selenides. Journal of Physics: Conference Series, 2007, 79, 012016.	0.4	1
104	Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1147-1150.	0.8	1
105	Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012056.	0.6	1
106	On the Kinetics Description of Below-T _g Structural Relaxation in Network Glass Formers. Solid State Phenomena, 2013, 200, 162-167.	0.3	1
107	Effect of Gamma Exposure on Chalcogenide Glass Films for Microphotonic Devices. , 2016, , .		1
108	Effect of P/Bi substitution on optical and thermal properties of Ga-Ge-Se-Te glasses. Journal of Alloys and Compounds, 2020, 835, 155224.	5.5	1

7

#	Article	IF	CITATIONS
109	On the paradigm of physical aging in stoichiometric As2Se3 glass as illusory manifestation of anti-aging ability in optimally-constrained covalent networks. Coordination Chemistry Reviews, 2021, 449, 214211.	18.8	1
110	Dynamics of structural relaxation in bioactive 45S5 glass. Journal of Physics Condensed Matter, 2020, 32, 295401.	1.8	1
111	On the kinetics description of below-T <inf>g</inf> structural relaxation in network glass formers. , 2012, , .		0
112	Photoresponse of inorganic-organic thin film composites based on chalcogenide glasses. AIP Conference Proceedings, 2018, , .	0.4	0
113	Remedial insight on ageing of glass through the study of ancient manâ€made artefacts. Archaeometry, 2021, 63, 312-326.	1.3	0