Anna Castañé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3630290/publications.pdf

Version: 2024-02-01

37 papers

1,810 citations

279798 23 h-index 35 g-index

38 all docs 38 docs citations

times ranked

38

2462 citing authors

#	Article	IF	CITATIONS
1	Discrimination of motor and sensorimotor effects of phencyclidine and MK-801: Involvement of GluN2C-containing NMDA receptors in psychosis-like models. Neuropharmacology, 2022, 213, 109079.	4.1	3
2	Astrocyte control of glutamatergic activity: Downstream effects on serotonergic function and emotional behavior. Neuropharmacology, 2020, 166, 107914.	4.1	47
3	Involvement of NMDA receptors containing the GluN2C subunit in the psychotomimetic and antidepressant-like effects of ketamine. Translational Psychiatry, 2020, 10, 427.	4.8	13
4	Cyclin-Dependent Kinase 5 Dysfunction Contributes to Depressive-like Behaviors in Huntington's Disease by Altering the DARPP-32 Phosphorylation Status in the Nucleus Accumbens. Biological Psychiatry, 2019, 86, 196-207.	1.3	17
5	Serotonergic mechanisms involved in antidepressant-like responses evoked by GLT-1 blockade in rat infralimbic cortex. Neuropharmacology, 2018, 139, 41-51.	4.1	19
6	Social Memory and Social Patterns Alterations in the Absence of STriatal-Enriched Protein Tyrosine Phosphatase. Frontiers in Behavioral Neuroscience, 2018, 12, 317.	2.0	11
7	Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats. Translational Psychiatry, 2017, 7, e1038-e1038.	4.8	57
8	Differential Patterns of Subcortical Activity Evoked by Glial GLT-1 Blockade in Prelimbic and Infralimbic Cortex: Relationship to Antidepressant-Like Effects in Rats. International Journal of Neuropsychopharmacology, 2017, 20, 988-993.	2.1	17
9	Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS. Nature Reviews Drug Discovery, 2017, 16, 1-2.	46.4	35
10	Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Cerebral Cortex, 2016, 26, 2778-2789.	2.9	60
11	5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine. European Neuropsychopharmacology, 2015, 25, 1353-1361.	0.7	14
12	PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology, 2015, 232, 4085-4097.	3.1	54
13	DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Frontiers in Aging Neuroscience, 2014, 6, 167.	3.4	24
14	Acute 5-HT1A autoreceptor knockdown increases antidepressant responses and serotonin release in stressful conditions. Psychopharmacology, 2013, 225, 61-74.	3.1	64
15	A.7 - NEUROBIOLOGICAL BASES OF ACUTE AND REPEATED PCP-BASED MICE MODELS OF SCHIZOPHRENIA. Behavioural Pharmacology, 2013, 24, e24.	1.7	0
16	Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Molecular Psychiatry, 2012, 17, 612-623.	7.9	111
17	Noradrenergic antidepressants increase cortical dopamine: Potential use in augmentation strategies. Neuropharmacology, 2012, 63, 675-684.	4.1	26
18	New antidepressant strategy based on acute siRNA silencing of 5-HT1A autoreceptors. Molecular Psychiatry, 2012, 17, 567-567.	7.9	11

#	Article	IF	CITATIONS
19	Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behavioural Brain Research, 2010, 210, 74-83.	2.2	165
20	Clozapine does not require 5-HT1A receptors to block the locomotor hyperactivity induced by MK-801. Neuropharmacology, 2010, 59, 112-120.	4.1	32
21	Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior. Psychopharmacology, 2009, 202, 611-620.	3.1	96
22	Delta-9-tetrahydrocannabinol enhances food reinforcement in a mouse operant conflict test. Psychopharmacology, 2009, 205, 475-487.	3.1	21
23	The absence of 5-HT1A receptors has minor effects on dopamine but not serotonin release evoked by MK-801 in mice prefrontal cortex. Psychopharmacology, 2008, 200, 281-290.	3.1	18
24	Behavioural and biochemical responses to morphine associated with its motivational properties are altered in adenosine A _{2A} receptor knockout mice. British Journal of Pharmacology, 2008, 155, 757-766.	5.4	22
25	Genetic and pharmacological approaches to evaluate the interaction between the cannabinoid and cholinergic systems in cognitive processes. British Journal of Pharmacology, 2007, 150, 758-765.	5.4	18
26	Attenuation of nicotine-induced rewarding effects in A2A knockout mice. Neuropharmacology, 2006, 51, 631-640.	4.1	50
27	Development and expression of neuropathic pain in CB1 knockout mice. Neuropharmacology, 2006, 50, 111-122.	4.1	40
28	The Lack of A2A Adenosine Receptors Diminishes the Reinforcing Efficacy of Cocaine. Neuropsychopharmacology, 2006, 31, 978-987.	5.4	79
29	The role of the cannabinoid system in nicotine addiction. Pharmacology Biochemistry and Behavior, 2005, 81, 381-386.	2.9	63
30	Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC. European Journal of Neuroscience, 2004, 20, 2203-2213.	2.6	74
31	Role of different brain structures in the behavioural expression of WIN 55,212-2 withdrawal in mice. British Journal of Pharmacology, 2004, 142, 1309-1317.	5.4	26
32	Effects of nandrolone on acute morphine responses, tolerance and dependence in mice. European Journal of Pharmacology, 2003, 465, 69-81.	3.5	40
33	Cannabinoid withdrawal syndrome is reduced in double mu and delta opioid receptor knockout mice. European Journal of Neuroscience, 2003, 17, 155-159.	2.6	64
34	Increase of morphine withdrawal in mice lacking A _{2a} receptors and no changes in CB ₁ /A _{2a} double knockout mice. European Journal of Neuroscience, 2003, 17, 315-324.	2.6	52
35	Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology, 2002, 43, 857-867.	4.1	230
36	Age-related changes of anandamide metabolism in CB1cannabinoid receptor knockout mice: correlation with behaviour. European Journal of Neuroscience, 2002, 15, 1178-1186.	2.6	137

ARTICLE IF CITATIONS

37 Experimental Research., 0,, 449-489.