Rene F K Spada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629976/publications.pdf

Version: 2024-02-01

1163117 1125743 24 200 8 13 citations h-index g-index papers 25 25 25 208 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. Journal of Chemical Physics, 2020, 152, 134110.	3.0	42
2	O (³ P) + CH ₃ SH reactions: Structures, energetics, and kinetics. International Journal of Quantum Chemistry, 2012, 112, 3269-3275.	2.0	18
3	Accurate rovibrational energies of ozone isotopologues up to $\langle i \rangle J \langle i \rangle = 10$ utilizing artificial neural networks. Journal of Chemical Physics, 2018, 149, 024307.	3.0	17
4	Thermochemistry and kinetics of the <mml:math altimg="si24.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="italic">trans</mml:mi><mml:mtext>-</mml:mtext><mml:msub><mml:mrow><mml:mi>N</mml:mi> reaction. Chemical Physics Letters, 2013, 557, 37-42.</mml:mrow></mml:msub></mml:mrow></mml:math>	. ? /6mml:mr	-133 - cw> < mml:n
5	Hydrogen Abstraction from the Hydrazine Molecule by an Oxygen Atom. Journal of Physical Chemistry A, 2015, 119, 1628-1635.	2.5	12
6	THE H ₂ Â+ÂCOÂ ÂH ₂ CO REACTION: RATE CONSTANTS AND RELEVANCE TO HOT AND DENSE ASTROPHYSICAL MEDIA. Astrophysical Journal, Supplement Series, 2016, 225, 2.	7.7	10
7	Thermochemical and Kinetics of CH ₃ SH + H Reactions: The Sensitivity of Coupling the Low and High-Level Methodologies. Journal of Physical Chemistry A, 2017, 121, 419-428.	2.5	10
8	Investigation of the ozone formation reaction pathway: Comparisons of full configuration interaction quantum Monte Carlo and fixed-node diffusion Monte Carlo with contracted and uncontracted MRCI. Journal of Chemical Physics, 2017, 147, 094306.	3.0	10
9	Dehydrogenation of $\langle i \rangle N \langle i \rangle 2 \langle i \rangle H \langle i \rangle \langle i \rangle X \langle i \rangle = 2 \hat{a}^3 4$ by nitrogen atoms: Thermochemical and kinetics. Journal of Chemical Physics, 2013, 139, 194301.	3.0	8
10	Accurate Calculations of Rate Constants for the Forward and Reverse H ₂ O + CO â†" HCOOH Reactions. ChemistrySelect, 2017, 2, 7267-7272.	1.5	8
11	Thermochemical and Kinetics of Hydrazine Dehydrogenation by an Oxygen Atom in Hydrazine-Rich Systems: A Dimer Model. Journal of Physical Chemistry A, 2015, 119, 12607-12614.	2.5	7
12	A Proposal for the Mechanism of the CH + CO2 Reaction. ACS Omega, 2019, 4, 17843-17849.	3.5	5
13	Potential Energy Curves for Formation of the CH2O2 Criegee Intermediate on the 3CH2 + 3O2 Singlet and Triplet Potential Energy Surfaces. Journal of Physical Chemistry A, 2019, 123, 8968-8975.	2.5	5
14	The influence of the environment in chemical reactivity: the HCOOH formation from the H2O + CO reaction. Journal of Molecular Modeling, 2021, 27, 264.	1.8	5
15	Implications of the (H2O)nÂ+ÂCO â†" trans-HCOOHÂ+Â(H2O)nâ€"1 (nÂ=Â1, 2, and 3) reactions for primordial atmospheres of Venus and Earth. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3191-3200.	4.4	4
16	Valence Band Structure of Coupled Diluted Magnetic Quantum Dots. Journal of Superconductivity and Novel Magnetism, 2010, 23, 121-125.	1.8	3
17	A multireference configuration interaction study of CuB and CuAl molecular constants and photoionization spectra. Journal of Chemical Physics, 2013, 139, 124316.	3.0	3
18	Thermochemical and kinetics studies of the CH3SH+S (3P) hydrogen abstraction and insertion reactions. Journal of Molecular Modeling, 2014, 20, 2449.	1.8	3

#	Article	IF	CITATIONS
19	Could HCN Be Responsible for the Formamide Synthesis in Earth's Primitive Atmosphere?. Astrophysical Journal, Supplement Series, 2019, 245, 11.	7.7	3
20	Spin-density calculation via the graphical unitary group approach. Molecular Physics, 2023, 121, .	1.7	3
21	Thermochemical and Kinetics of the CH ₃ OH + (⁴ S)N Reactional System. Journal of Physical Chemistry A, 2018, 122, 5905-5910.	2.5	2
22	Methanol and glycolaldehyde production from formaldehyde in massive star-forming regions. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4486-4494.	4.4	2
23	Tunneling Enhancement of the Gas-Phase CH + CO ₂ Reaction at Low Temperature. Journal of Physical Chemistry A, 2020, 124, 10717-10725.	2.5	1
24	Reply to "Comment on â€Thermochemical and Kinetics of the CH3OH+(4S)N Reactional System'― Jou of Physical Chemistry A, 2019, 123, 967-969.	ırnal 2.5	0