
Stephen A Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic profiling of idiopathic Parkinson's disease primary patient cells by SWATHâ€MS. Proteomics - Clinical Applications, 2022, 16, e2200015.	1.6	3
2	Abnormal Behavior and Cortical Connectivity Deficits in Mice Lacking <i>Usp9x</i> . Cerebral Cortex, 2021, 31, 1763-1775.	2.9	5
3	Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Science Advances, 2021, 7, .	10.3	43
4	Hunting for Familial Parkinson's Disease Mutations in the Post Genome Era. Genes, 2021, 12, 430.	2.4	4
5	Therapeutic inhibition of USP9x-mediated Notch signaling in triple-negative breast cancer. Proceedings of the United States of America, 2021, 118, .	7.1	29
6	Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder Converging on Transforming Growth Factor β Signaling. Biological Psychiatry, 2020, 87, 100-112.	1.3	42
7	Usp9X Controls Ankyrin-Repeat Domain Protein Homeostasis during Dendritic Spine Development. Neuron, 2020, 105, 506-521.e7.	8.1	34
8	Chemical constituents from Macleaya cordata (Willd) R. Br. and their phenotypic functions against a Parkinson's disease patient-derived cell line. Bioorganic and Medicinal Chemistry, 2020, 28, 115732.	3.0	9
9	Missense variant contribution to USP9X-female syndrome. Npj Genomic Medicine, 2020, 5, 53.	3.8	17
10	A Grand Challenge. 3. Unbiased Phenotypic Function of Metabolites from Australia Plants Gloriosa superba and Alangium villosum against Parkinson's Disease. Journal of Natural Products, 2020, 83, 1440-1452.	3.0	5
11	Evidence of a Recessively Inherited CCN3 Mutation as a Rare Cause of Early-Onset Parkinsonism. Frontiers in Neurology, 2020, 11, 331.	2.4	1
12	The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder. Molecular Neurobiology, 2020, 57, 2179-2193.	4.0	23
13	Pipeline to gene discovery - Analysing familial Parkinsonism in the Queensland Parkinson's Project. Parkinsonism and Related Disorders, 2018, 49, 34-41.	2.2	17
14	Assessing stemness and proliferation properties of the newly established colon cancer â€~stem' cell line, CSC480 and novel approaches to identify dormant cancer cells. Oncology Reports, 2018, 39, 2881-2891.	2.6	8
15	Design and Synthesis of Natural Product Inspired Libraries Based on the Three-Dimensional (3D) Cedrane Scaffold: Toward the Exploration of 3D Biological Space. Journal of Medicinal Chemistry, 2018, 61, 6609-6628.	6.4	20
16	The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. Journal of Clinical Investigation, 2018, 128, 1326-1337.	8.2	77
17	Spermatogonial deubiquitinase USP9X is essential for proper spermatogenesis in mice. Reproduction, 2017, 154, 135-143.	2.6	24
18	USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors. Scientific Reports, 2017, 7, 391.	3.3	27

STEPHEN A WOOD

#	Article	IF	CITATIONS
19	Grb2-Mediated Recruitment of USP9X to LAT Enhances Themis Stability following Thymic Selection. Journal of Immunology, 2017, 199, 2758-2766.	0.8	8
20	Loss of Usp9x disrupts cell adhesion, and components of the Wnt and Notch signaling pathways in neural progenitors. Scientific Reports, 2017, 7, 8109.	3.3	24
21	Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS Kinase and Core Components of the Hippo Pathway. Cancer Research, 2017, 77, 4921-4933.	0.9	63
22	DNA methylation in schizophrenia in different patient-derived cell types. NPJ Schizophrenia, 2017, 3, 6.	3.6	25
23	Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus. Scientific Reports, 2016, 6, 25783.	3.3	28
24	Nrf2: a modulator of Parkinson's disease?. Journal of Neural Transmission, 2016, 123, 611-619.	2.8	73
25	Deubiquitylating enzyme, <scp>USP</scp> 9X, regulates proliferation of cells of head and neck cancer lines. Cell Proliferation, 2016, 49, 494-502.	5.3	16
26	A Grand Challenge. 2. Phenotypic Profiling of a Natural Product Library on Parkinson's Patient-Derived Cells. Journal of Natural Products, 2016, 79, 1982-1989.	3.0	11
27	USP9X deletion elevates the density of oligodendrocytes within the postnatal dentate gyrus. Neurogenesis (Austin, Tex), 2016, 3, e1235524.	1.5	3
28	A Grand Challenge: Unbiased Phenotypic Function of Metabolites from <i>Jaspis splendens</i> against Parkinson's Disease. Journal of Natural Products, 2016, 79, 353-361.	3.0	19
29	De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. American Journal of Human Genetics, 2016, 98, 373-381.	6.2	95
30	Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease. PLoS ONE, 2016, 11, e0154544.	2.5	13
31	ISDN2014_0079: Deubiquitylating enzyme Usp9x regulates neural progenitor fate in vivo. International Journal of Developmental Neuroscience, 2015, 47, 21-21.	1.6	0
32	La FAM fatale: USP9X in development and disease. Cellular and Molecular Life Sciences, 2015, 72, 2075-2089.	5.4	145
33	Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase. PLoS Genetics, 2015, 11, e1005022.	3.5	66
34	Kororamide B, a brominated alkaloid from the bryozoan Amathia tortuosa and its effects on Parkinson's disease cells. Tetrahedron, 2015, 71, 7879-7884.	1.9	13
35	Comprehensive Assessment of Genetic Sequence Variants in the Antioxidant â€~Master Regulator' Nrf2 in Idiopathic Parkinson's Disease. PLoS ONE, 2015, 10, e0128030.	2.5	28
36	Mutations in USP9X Are Associated with X-Linked Intellectual Disability and Disrupt Neuronal Cell Migration and Growth. American Journal of Human Genetics, 2014, 94, 470-478.	6.2	117

STEPHEN A WOOD

#	Article	IF	CITATIONS
37	The Vps35 <scp>D620N</scp> Mutation Linked to Parkinson's Disease Disrupts the Cargo Sorting Function of Retromer. Traffic, 2014, 15, 230-244.	2.7	186
38	Rare POLG1 CAG variants do not influence Parkinson's disease or polymerase gamma function. Mitochondrion, 2014, 15, 65-68.	3.4	8
39	NMR Fingerprints of the Drugâ€like Naturalâ€Product Space Identify Iotrochotazineâ€A: A Chemical Probe to Study Parkinson's Disease. Angewandte Chemie - International Edition, 2014, 53, 6070-6074.	13.8	56
40	Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells. Particle and Fibre Toxicology, 2013, 10, 54.	6.2	33
41	A patient-derived stem cell model of hereditary spastic paraplegia with <i>SPAST</i> mutations. DMM Disease Models and Mechanisms, 2013, 6, 489-502.	2.4	55
42	Loss of Usp9x Disrupts Cortical Architecture, Hippocampal Development and TGFÎ ² -Mediated Axonogenesis. PLoS ONE, 2013, 8, e68287.	2.5	77
43	Variability in the Generation of Induced Pluripotent Stem Cells: Importance for Disease Modeling. Stem Cells Translational Medicine, 2012, 1, 641-650.	3.3	68
44	The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature, 2012, 486, 266-270.	27.8	297
45	Identification of Ubiquitin-specific Protease 9X (USP9X) as a Deubiquitinase Acting on Ubiquitin-Peroxin 5 (PEX5) Thioester Conjugate. Journal of Biological Chemistry, 2012, 287, 12815-12827.	3.4	87
46	NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease. PLoS ONE, 2011, 6, e21907.	2.5	81
47	Stem Cell Models for Biomarker Discovery in Brain Disease. International Review of Neurobiology, 2011, 101, 239-257.	2.0	4
48	USP9x-mediated deubiquitination of EFA6 regulates de novo tight junction assembly. EMBO Journal, 2010, 29, 1499-1509.	7.8	49
49	Identification of a Deubiquitinating Enzyme as a Novel AGS3-Interacting Protein. PLoS ONE, 2010, 5, e9725.	2.5	12
50	Disease-specific, neurosphere-derived cells as models for brain disorders. DMM Disease Models and Mechanisms, 2010, 3, 785-798.	2.4	175
51	Region-Specific Protein Abundance Changes in the Brain of MPTP-Induced Parkinson's Disease Mouse Model. Journal of Proteome Research, 2010, 9, 1496-1509.	3.7	69
52	USP9X Enhances the Polarity and Self-Renewal of Embryonic Stem Cell-derived Neural Progenitors. Molecular Biology of the Cell, 2009, 20, 2015-2029.	2.1	52
53	Regulation of epithelial apical junctions and barrier function by Gα13. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1228-1235.	4.1	8
54	The Ubiquitin E3 Ligase MARCH7 is Differentially Regulated by the Deubiquitylating Enzymes USP7 and USP9X. Traffic, 2008, 9, 1130-1145.	2.7	72

STEPHEN A WOOD

#	Article	IF	CITATIONS
55	Evolutionary and Expression Analysis of the Zebrafish Deubiquitylating Enzyme, Usp9. Zebrafish, 2007, 4, 95-101.	1.1	13
56	Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes. Journal of Cell Biology, 2006, 173, 463-468.	5.2	61
57	The Ubiquitin Ligase Itch Is Auto-ubiquitylated in Vivo and in Vitro but Is Protected from Degradation by Interacting with the Deubiquitylating Enzyme FAM/USP9X. Journal of Biological Chemistry, 2006, 281, 38738-38747.	3.4	106
58	Doublecortin interacts with the ubiquitin protease DFFRX, which associates with microtubules in neuronal processes. Molecular and Cellular Neurosciences, 2005, 28, 153-164.	2.2	43
59	A close correlation in the expression patterns of Af-6 and Usp9x in Sertoli and granulosa cells of mouse testis and ovary. Reproduction, 2004, 128, 583-594.	2.6	8
60	The FAM Deubiquitylating Enzyme Localizes to Multiple Points of Protein Trafficking in Epithelia, where It Associates with E-cadherin and β-catenin. Molecular Biology of the Cell, 2004, 15, 1591-1599.	2.1	75
61	Dubble or Nothing? Is HAUSP Deubiquitylating Enzyme the Final Arbiter of p53 Levels?. Science Signaling, 2002, 2002, pe34-pe34.	3.6	5
62	Stage- and sex-dependent expressions of Usp9x, an X-linked mouse ortholog of Drosophila Fat facets, during gonadal development and oogenesis in mice. Mechanisms of Development, 2002, 119, S91-S95.	1.7	22
63	FAM deubiquitylating enzyme is essential for preimplantation mouse embryo development. Mechanisms of Development, 2001, 109, 151-160.	1.7	61
64	On the conservation of function of the Drosophila Fat facets deubiquitinating enzyme and Fam, its mouse homolog. Development Genes and Evolution, 2000, 210, 603-610.	0.9	38
65	The HMG Box Transcription Factor Gene Sox14 Marks a Novel Subset of Ventral Interneurons and Is Regulated by Sonic Hedgehog. Developmental Biology, 2000, 219, 142-153.	2.0	51
66	Co-localization of FAM and AF-6, the mammalian homologues of Drosophila faf and canoe, in mouse eye development. Mechanisms of Development, 2000, 91, 383-386.	1.7	27
67	The deubiquitinating enzyme Fam interacts with and stabilizes β-catenin. Genes To Cells, 1999, 4, 757-767.	1.2	123
68	Retinoic acid-dependent upregulation of mouse folate receptor-α expression in embryonic stem cells, and conservation of alternative splicing patterns. Gene, 1999, 230, 215-224.	2.2	19
69	The Ras Target AF-6 is a Substrate of the Fam Deubiquitinating Enzyme. Journal of Cell Biology, 1998, 142, 1053-1062.	5.2	109
70	Cloning and expression analysis of a novel mouse gene with sequence similarity to the Drosophila fat facets gene. Mechanisms of Development, 1997, 63, 29-38.	1.7	90
71	Gene knock-out technology: a methodological overview for the interested novice. Journal of Immunological Methods, 1995, 181, 1-15.	1.4	100
72	Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature, 1993, 365, 87-89.	27.8	281

#	Article	IF	CITATIONS
73	Simple and efficient production of embryonic stem cell-embryo chimeras by coculture Proceedings of the United States of America, 1993, 90, 4582-4585.	7.1	100
74	Genes and functions: trapping and targeting in embryonic stem cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 1992, 1114, 209-221.	7.4	11