List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629480/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide generation study of unsymmetrical β-diketiminato copper(<scp>ii</scp>) nitrite complexes. Dalton Transactions, 2022, 51, 3485-3496.	3.3	7
2	Synthesis, in silico and in vitro studies of piperazinyl thiourea derivatives as apoptosis inducer for the treatment of colorectal carcinoma. Journal of Molecular Structure, 2022, 1262, 133086.	3.6	3
3	An investigation on catalytic nitrite reduction reaction by bioinspired Cu ^{II} complexes. Dalton Transactions, 2022, 51, 7715-7722.	3.3	7
4	Bidentate acylthiourea ligand anchored Pd-PPh3 complexes with biomolecular binding, cytotoxic, antioxidant and antihemolytic properties. Journal of Inorganic Biochemistry, 2022, 233, 111843.	3.5	10
5	Pd(II)–PPh ₃ complexes of halogen substituted acylthiourea ligands: Biomolecular interactions and <i>in vitro</i> antiâ€proliferative activity. Applied Organometallic Chemistry, 2022, 36, .	3.5	6
6	Spectroscopic, anticancer and antioxidant studies of fluxional trans-[PdCl2(S-acylthiourea)2] complexes. Results in Chemistry, 2021, 3, 100157.	2.0	17
7	Binding mode transformation and biological activity on the Ru(II)-DMSO complexes bearing heterocyclic pyrazolyl ligands. Journal of Inorganic Biochemistry, 2021, 223, 111545.	3.5	9
8	27.28 Product Class 28: β-Diketimines (1,3-Diimines). , 2021, , .		0
9	Effect of new Pd(II)-aroylthiourea complex on pancreatic cancer cells. Inorganic Chemistry Communication, 2021, 134, 109018.	3.9	2
10	Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies. Molecules, 2021, 26, 7341.	3.8	5
11	Synthesis of triisocyanomesitylene β‑diketiminato copper(I) complexes and evaluation of isocyanide Ï€-back bonding. Polyhedron, 2020, 192, 114828.	2.2	5
12	Formation of iron(<scp>iii</scp>)–thiolate metallocyclophane using a ferrocene-based bis-isocyanide. New Journal of Chemistry, 2020, 44, 18242-18249.	2.8	4
13	Investigation on the coordination behaviors of tris(2-pyridyl)pyrazolyl borates iron(II) complexes. Inorganica Chimica Acta, 2019, 495, 118966.	2.4	5
14	Half-sandwich Ru(η6-p-cymene) complexes featuring pyrazole appended ligands: Synthesis, DNA binding and in vitro cytotoxicity. Journal of Inorganic Biochemistry, 2019, 194, 74-84.	3.5	29
15	Structure and nitrite reduction reactivity study of bio-inspired copper(<scp>i</scp>)–nitro complexes in steric and electronic considerations of tridentate nitrogen ligands. Dalton Transactions, 2018, 47, 5335-5341.	3.3	17
16	Improved Synthesis of Unsymmetrical N -Aryl-N′ -alkylpyridyl ß-Diketimines Using Molecular Sieves and their Lithium Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 1093-1098.	2.0	10
17	Importance of Binding Affinity for the Activity of a Metallodendritic Chemical Nuclease. Pharmaceutics, 2018, 10, 258.	4.5	1
18	Nitric oxide-release study of a bio-inspired copper(i)-nitrito complex under chemical and biological conditions. Dalton Transactions, 2018, 47, 13151-13157.	3.3	5

#	Article	IF	CITATIONS
19	Reactivity Study of Unsymmetrical β-Diketiminato Copper(I) Complexes: Effect of the Chelating Ring. Inorganic Chemistry, 2017, 56, 2722-2735.	4.0	12
20	Stepwise and Self-Assembly Synthesis of Tetranuclear Iron-Thiolate-Diisocyanide Metallocyclophane Complexes. Journal of the Chinese Chemical Society, 2017, 64, 94-102.	1.4	2
21	Enhanced Catalytic Activity of Aluminum Complexes for the Ring-Opening Polymerization of ε-Caprolactone. Inorganic Chemistry, 2017, 56, 7998-8006.	4.0	19
22	Synthesis, characterization, and catalytic activity of sodium ketminiate complexes toward the ring-opening polymerization of <scp>l</scp> -lactide. RSC Advances, 2016, 6, 33014-33021.	3.6	17
23	Steric and chelating ring concerns on the <scp>l</scp> -lactide polymerization by asymmetric β-diketiminato zinc complexes. RSC Advances, 2016, 6, 36705-36714.	3.6	11
24	Voltammetric Study and Electrodeposition of Ni(II)/Fe(II) in the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide. Journal of the Electrochemical Society, 2016, 163, D9-D16.	2.9	27
25	Cooperative Effects in Copper PolyamidoÂamine Dendrimer Complexes Catalyzing the Reduction of Molecular Oxygen. European Journal of Inorganic Chemistry, 2015, 2015, 4839-4847.	2.0	6
26	Comparing <scp>l</scp> -lactide and ε-caprolactone polymerization by using aluminum complexes bearing ketiminate ligands: steric, electronic, and chelating effects. RSC Advances, 2015, 5, 100272-100280.	3.6	24
27	Interaction of electrons with cisplatin and the subsequent effect on DNA damage: a density functional theory study. Physical Chemistry Chemical Physics, 2014, 16, 19290.	2.8	14
28	A simple competition assay to probe pentacopper(I)-thiolato cluster ligand exchange. Journal of Inorganic Biochemistry, 2013, 120, 24-31.	3.5	6
29	Synthesis, characterization, and catalytic activity of titanium iminophenoxide complexes in relation to the ringâ€opening polymerization of <scp>L</scp> â€lactide and εâ€caprolactone. Journal of Polymer Science Part A, 2013, 51, 327-333.	2.3	16
30	Theoretical Study of the Protonation of the One-Electron-Reduced Guanine–Cytosine Base Pair by Water. Journal of Physical Chemistry B, 2013, 117, 2096-2105.	2.6	14
31	Improving the ring-opening polymerization of ε-caprolactone and l-lactide using stannous octanoate. Polymer Bulletin, 2013, 70, 993-1001.	3.3	13
32	Copper(I) Nitro Complex with an Anionic [HB(3,5-Me ₂ Pz) ₃] ^{â^'} Ligand: A Synthetic Model for the Copper Nitrite Reductase Active Site. Inorganic Chemistry, 2012, 51, 9297-9308.	4.0	41
33	Synthesis, characterization and catalytic activity of lithium and sodium iminophenoxide complexes towards ring-opening polymerization of l-lactide. Dalton Transactions, 2012, 41, 3659.	3.3	61
34	ε aprolactone polymerization under air by the biocatalyst: Magnesium 2,6â€diâ€ <i>tert</i> â€butylâ€4â€methylphenoxide. Journal of Polymer Science Part A, 2012, 50, 2697-2704.	2.3	33
35	<i>In situ</i> formation of Sn(IV) catalyst with increased activity in ε aprolactone and <i>L</i> ″actide polymerization using stannous(II) 2â€ethylhexanoate. Journal of Polymer Science Part A, 2012, 50, 3286-3294	2.3	13
36	Extraction of Cupric Ions with Ionic Liquids Containing Polypyridineâ€type Small Molecules or Peripherally Pyridineâ€modified Dendrimers. Chemistry - an Asian Journal, 2012, 7, 2438-2445.	3.3	4

#	Article	IF	CITATIONS
37	Effect of nucleobase sequence on the proton-transfer reaction and stability of the guanine–cytosine base pair radical anion. Physical Chemistry Chemical Physics, 2011, 13, 2674-2681.	2.8	30
38	Self-Assembly and Redox Modulation of the Cavity Size of an Unusual Rectangular Iron Thiolate Aryldiisocyanide Metallocyclophane. Inorganic Chemistry, 2011, 50, 10825-10834.	4.0	22
39	Potassiumâ€encapsulated arsenicâ€dithiolato compounds: Synthesis, structural calculation, and biological relevance. Kaohsiung Journal of Medical Sciences, 2011, 27, 424-429.	1.9	3
40	Copper complex of a pyridine-modified poly(amidoamine) dendrimer as a chemical nuclease: synthetic and catalytic study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 273-276.	3.3	15
41	Characterization of A New Copper(I)â^'Nitrito Complex That Evolves Nitric Oxide. Inorganic Chemistry, 2010, 49, 5377-5384.	4.0	37
42	Microhydration of 9-methylguanine:1-methylcytosinebase pair and its radical anion: a density functional theory study. Physical Chemistry Chemical Physics, 2010, 12, 1253-1263.	2.8	12
43	Theoretical evidence of barrier-free proton transfer in 7-azaindole-water cluster anions. Journal of Chemical Physics, 2009, 130, 165101.	3.0	7
44	Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. Journal of Biological Inorganic Chemistry, 2009, 14, 253-260.	2.6	147
45	Extracting Cu(II) from aqueous solutions with hydrophobic room-temperature ionic liquid in the presence of a pyridine-based ionophore to attempt Cu recovery: A laboratory study. Electrochimica Acta, 2009, 54, 1744-1751.	5.2	36
46	Methyl–oxygen bond cleavage in hemilabile phosphine–ether ligand of ruthenium(II) complexes. Journal of Organometallic Chemistry, 2009, 694, 1912-1917.	1.8	11
47	Proton Transfer in Guanineâ^Cytosine Radical Anion Embedded in B-Form DNA. Journal of the American Chemical Society, 2009, 131, 15930-15938.	13.7	81
48	Synthesis, characterization, and structural study of iron–sulfur core {Cp2Fe2(μ-SEt)2} complexes. Journal of Organometallic Chemistry, 2008, 693, 3035-3042.	1.8	9
49	The first anion template cubic cyanometallate cage and its 3,5-dimethyltris(pyrazolyl)methane iron(II,III) tricyanide building blocks. Inorganic Chemistry Communication, 2008, 11, 1264-1266.	3.9	10
50	Synthesis of substituted 2,5-dihydro-1-naphthoxepines from 1-naphthol via ring-closing metathesis. Arkivoc, 2008, 2008, 205-217.	0.5	5
51	Synthesis and Characterization of Copper(I) Complexes Containing Tri(2â€Pyridylmethyl)Amine Ligand. Journal of the Chinese Chemical Society, 2007, 54, 685-692.	1.4	17
52	Dinuclear copper(I) complexes of tris(3,5-dimethylpyrazol-1-yl)methane: Synthesis, structure, and reactivity. Journal of Organometallic Chemistry, 2007, 692, 3676-3684.	1.8	15
53	Title is missing!. Angewandte Chemie, 2003, 115, 2767-2770.	2.0	4
54	Membership Rules for a Molecular Box: The Admission Process and Protection Provided to Guest Molecules. Angewandte Chemie - International Edition, 2003, 42, 2663-2666.	13.8	37

#	Article	IF	CITATIONS
55	Preparative and Structural Studies on the Carbonyl Cyanides of Iron, Manganese, and Ruthenium:Â Fundamentals Relevant to the Hydrogenases. Inorganic Chemistry, 2002, 41, 1670-1678.	4.0	31
56	The Influence of Cyanide on the Carbonylation of Iron(II):  Synthesis of Feâ^'SRâ^'CNâ^'CO Centers Related to the Hydrogenase Active Sites. Journal of the American Chemical Society, 2001, 123, 6933-6934.	13.7	83
57	Syntheses, characterization and facial–meridional isomerism of tungsten tricarbonyl diphosphine complexes. Journal of the Chemical Society Dalton Transactions, 1998, , 125-132.	1.1	13
58	Câ°'H versus Câ°'C Activation of Biphenylene in Its Reactions with Iron Group Carbonyl Clusters. Organometallics, 1998, 17, 2477-2483.	2.3	41
59	Reductive Dimerization and Thermal Rearrangement of Biphenylene Coordinated to Tricarbonylmanganese. Journal of the American Chemical Society, 1998, 120, 13250-13251.	13.7	10
60	Syntheses and characterization of tricarbonyl tungsten complexes containing 1,1′-bis(diphenylphosphino) ferrocene ligand. Journal of Organometallic Chemistry, 1995, 492, 121-127.	1.8	24