Sodio C N Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629480/publications.pdf

Version: 2024-02-01

414414 430874 1,178 60 18 32 citations h-index g-index papers 63 63 63 1463 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. Journal of Biological Inorganic Chemistry, 2009, 14, 253-260.	2.6	147
2	The Influence of Cyanide on the Carbonylation of Iron(II):  Synthesis of Feâ^'SRâ^'CNâ^'CO Centers Related to the Hydrogenase Active Sites. Journal of the American Chemical Society, 2001, 123, 6933-6934.	13.7	83
3	Proton Transfer in Guanineâ^'Cytosine Radical Anion Embedded in B-Form DNA. Journal of the American Chemical Society, 2009, 131, 15930-15938.	13.7	81
4	Synthesis, characterization and catalytic activity of lithium and sodium iminophenoxide complexes towards ring-opening polymerization of l-lactide. Dalton Transactions, 2012, 41, 3659.	3.3	61
5	Câ^'H versus Câ^'C Activation of Biphenylene in Its Reactions with Iron Group Carbonyl Clusters. Organometallics, 1998, 17, 2477-2483.	2.3	41
6	Copper(I) Nitro Complex with an Anionic [HB(3,5-Me ₂ Pz) ₃] ^{â^'} Ligand: A Synthetic Model for the Copper Nitrite Reductase Active Site. Inorganic Chemistry, 2012, 51, 9297-9308.	4.0	41
7	Membership Rules for a Molecular Box: The Admission Process and Protection Provided to Guest Molecules. Angewandte Chemie - International Edition, 2003, 42, 2663-2666.	13.8	37
8	Characterization of A New Copper(I)â^'Nitrito Complex That Evolves Nitric Oxide. Inorganic Chemistry, 2010, 49, 5377-5384.	4.0	37
9	Extracting Cu(II) from aqueous solutions with hydrophobic room-temperature ionic liquid in the presence of a pyridine-based ionophore to attempt Cu recovery: A laboratory study. Electrochimica Acta, 2009, 54, 1744-1751.	5.2	36
10	εâ€Caprolactone polymerization under air by the biocatalyst: Magnesium 2,6â€diâ€ <i>tert</i> à€butylâ€4â€methylphenoxide. Journal of Polymer Science Part A, 2012, 50, 2697-2704.	2.3	33
11	Preparative and Structural Studies on the Carbonyl Cyanides of Iron, Manganese, and Ruthenium:Â Fundamentals Relevant to the Hydrogenases. Inorganic Chemistry, 2002, 41, 1670-1678.	4.0	31
12	Effect of nucleobase sequence on the proton-transfer reaction and stability of the guanine–cytosine base pair radical anion. Physical Chemistry Chemical Physics, 2011, 13, 2674-2681.	2.8	30
13	Half-sandwich Ru(η6-p-cymene) complexes featuring pyrazole appended ligands: Synthesis, DNA binding and in vitro cytotoxicity. Journal of Inorganic Biochemistry, 2019, 194, 74-84.	3.5	29
14	Voltammetric Study and Electrodeposition of Ni(II)/Fe(II) in the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide. Journal of the Electrochemical Society, 2016, 163, D9-D16.	2.9	27
15	Syntheses and characterization of tricarbonyl tungsten complexes containing 1,1′-bis(diphenylphosphino) ferrocene ligand. Journal of Organometallic Chemistry, 1995, 492, 121-127.	1.8	24
16	Comparing $\langle scp \rangle \langle scp \rangle$ -lactide and $\hat{l}\mu$ -caprolactone polymerization by using aluminum complexes bearing ketiminate ligands: steric, electronic, and chelating effects. RSC Advances, 2015, 5, 100272-100280.	3.6	24
17	Self-Assembly and Redox Modulation of the Cavity Size of an Unusual Rectangular Iron Thiolate Aryldiisocyanide Metallocyclophane. Inorganic Chemistry, 2011, 50, 10825-10834.	4.0	22
18	Enhanced Catalytic Activity of Aluminum Complexes for the Ring-Opening Polymerization of Îμ-Caprolactone. Inorganic Chemistry, 2017, 56, 7998-8006.	4.0	19

#	Article	IF	CITATIONS
19	Synthesis and Characterization of Copper(I) Complexes Containing Tri(2â€Pyridylmethyl)Amine Ligand. Journal of the Chinese Chemical Society, 2007, 54, 685-692.	1.4	17
20	Synthesis, characterization, and catalytic activity of sodium ketminiate complexes toward the ring-opening polymerization of <scp>l</scp> -lactide. RSC Advances, 2016, 6, 33014-33021.	3.6	17
21	Structure and nitrite reduction reactivity study of bio-inspired copper(<scp>i</scp>)–nitro complexes in steric and electronic considerations of tridentate nitrogen ligands. Dalton Transactions, 2018, 47, 5335-5341.	3.3	17
22	Spectroscopic, anticancer and antioxidant studies of fluxional trans-[PdCl2(S-acylthiourea)2] complexes. Results in Chemistry, 2021, 3, 100157.	2.0	17
23	Synthesis, characterization, and catalytic activity of titanium iminophenoxide complexes in relation to the ringâ€opening polymerization of <scp>L</scp> â€lactide and εâ€caprolactone. Journal of Polymer Science Part A, 2013, 51, 327-333.	2.3	16
24	Dinuclear copper(I) complexes of tris(3,5-dimethylpyrazol-1-yl)methane: Synthesis, structure, and reactivity. Journal of Organometallic Chemistry, 2007, 692, 3676-3684.	1.8	15
25	Copper complex of a pyridine-modified poly(amidoamine) dendrimer as a chemical nuclease: synthetic and catalytic study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 273-276.	3.3	15
26	Theoretical Study of the Protonation of the One-Electron-Reduced Guanine–Cytosine Base Pair by Water. Journal of Physical Chemistry B, 2013, 117, 2096-2105.	2.6	14
27	Interaction of electrons with cisplatin and the subsequent effect on DNA damage: a density functional theory study. Physical Chemistry Chemical Physics, 2014, 16, 19290.	2.8	14
28	Syntheses, characterization and facial–meridional isomerism of tungsten tricarbonyl diphosphine complexes. Journal of the Chemical Society Dalton Transactions, 1998, , 125-132.	1.1	13
29	<i>In situ</i> formation of Sn(IV) catalyst with increased activity in Îμâ€caprolactone and <i>L</i> β€lactide polymerization using stannous(II) 2â€ethylhexanoate. Journal of Polymer Science Part A, 2012, 50, 3286-3294.	2.3	13
30	Improving the ring-opening polymerization of $\hat{l}\mu\text{-caprolactone}$ and l-lactide using stannous octanoate. Polymer Bulletin, 2013, 70, 993-1001.	3.3	13
31	Microhydration of 9-methylguanine:1-methylcytosinebase pair and its radical anion: a density functional theory study. Physical Chemistry Chemical Physics, 2010, 12, 1253-1263.	2.8	12
32	Reactivity Study of Unsymmetrical \hat{l}^2 -Diketiminato Copper(I) Complexes: Effect of the Chelating Ring. Inorganic Chemistry, 2017, 56, 2722-2735.	4.0	12
33	Methyl–oxygen bond cleavage in hemilabile phosphine–ether ligand of ruthenium(II) complexes. Journal of Organometallic Chemistry, 2009, 694, 1912-1917.	1.8	11
34	Steric and chelating ring concerns on the $<$ scp $>$ l $<$ lscp $>$ -lactide polymerization by asymmetric \hat{I}^2 -diketiminato zinc complexes. RSC Advances, 2016, 6, 36705-36714.	3.6	11
35	Reductive Dimerization and Thermal Rearrangement of Biphenylene Coordinated to Tricarbonylmanganese. Journal of the American Chemical Society, 1998, 120, 13250-13251.	13.7	10
36	The first anion template cubic cyanometallate cage and its 3,5-dimethyltris(pyrazolyl)methane iron(II,III) tricyanide building blocks. Inorganic Chemistry Communication, 2008, 11, 1264-1266.	3.9	10

#	Article	IF	CITATIONS
37	Improved Synthesis of Unsymmetrical N -Aryl-N′ -alkylpyridyl ß-Diketimines Using Molecular Sieves and their Lithium Complexes. European Journal of Inorganic Chemistry, 2018, 2018, 1093-1098.	2.0	10
38	Bidentate acylthiourea ligand anchored Pd-PPh3 complexes with biomolecular binding, cytotoxic, antioxidant and antihemolytic properties. Journal of Inorganic Biochemistry, 2022, 233, 111843.	3.5	10
39	Synthesis, characterization, and structural study of iron–sulfur core {Cp2Fe2(μ-SEt)2} complexes. Journal of Organometallic Chemistry, 2008, 693, 3035-3042.	1.8	9
40	Binding mode transformation and biological activity on the Ru(II)-DMSO complexes bearing heterocyclic pyrazolyl ligands. Journal of Inorganic Biochemistry, 2021, 223, 111545.	3.5	9
41	Theoretical evidence of barrier-free proton transfer in 7-azaindole-water cluster anions. Journal of Chemical Physics, 2009, 130, 165101.	3.0	7
42	Nitric oxide generation study of unsymmetrical \hat{l}^2 -diketiminato copper($<$ scp $>$ ii $<$ /scp $>$) nitrite complexes. Dalton Transactions, 2022, 51, 3485-3496.	3.3	7
43	An investigation on catalytic nitrite reduction reaction by bioinspired Cu ^{II} complexes. Dalton Transactions, 2022, 51, 7715-7722.	3.3	7
44	A simple competition assay to probe pentacopper(I)-thiolato cluster ligand exchange. Journal of Inorganic Biochemistry, 2013, 120, 24-31.	3.5	6
45	Cooperative Effects in Copper PolyamidoÂamine Dendrimer Complexes Catalyzing the Reduction of Molecular Oxygen. European Journal of Inorganic Chemistry, 2015, 2015, 4839-4847.	2.0	6
46	Pd(II)–PPh ₃ complexes of halogen substituted acylthiourea ligands: Biomolecular interactions and <i>in vitro</i> antiâ€proliferative activity. Applied Organometallic Chemistry, 2022, 36, .	3.5	6
47	Nitric oxide-release study of a bio-inspired copper(i)-nitrito complex under chemical and biological conditions. Dalton Transactions, 2018, 47, 13151-13157.	3.3	5
48	Investigation on the coordination behaviors of tris(2-pyridyl)pyrazolyl borates iron(II) complexes. Inorganica Chimica Acta, 2019, 495, 118966.	2.4	5
49	Synthesis of triisocyanomesitylene βâ€'diketiminato copper(I) complexes and evaluation of isocyanide Ï€-back bonding. Polyhedron, 2020, 192, 114828.	2.2	5
50	Synthesis of substituted 2,5-dihydro-1-naphthoxepines from 1-naphthol via ring-closing metathesis. Arkivoc, 2008, 2008, 205-217.	0.5	5
51	Tris-(2-pyridyl)-pyrazolyl Borate Zinc(II) Complexes: Synthesis, DNA/Protein Binding and In Vitro Cytotoxicity Studies. Molecules, 2021, 26, 7341.	3.8	5
52	Title is missing!. Angewandte Chemie, 2003, 115, 2767-2770.	2.0	4
53	Extraction of Cupric Ions with Ionic Liquids Containing Polypyridineâ€type Small Molecules or Peripherally Pyridineâ€modified Dendrimers. Chemistry - an Asian Journal, 2012, 7, 2438-2445.	3.3	4
54	Formation of iron(<scp>iii</scp>)–thiolate metallocyclophane using a ferrocene-based bis-isocyanide. New Journal of Chemistry, 2020, 44, 18242-18249.	2.8	4

#	Article	IF	CITATIONS
55	Potassiumâ€encapsulated arsenicâ€dithiolato compounds: Synthesis, structural calculation, and biological relevance. Kaohsiung Journal of Medical Sciences, 2011, 27, 424-429.	1.9	3
56	Synthesis, in silico and in vitro studies of piperazinyl thiourea derivatives as apoptosis inducer for the treatment of colorectal carcinoma. Journal of Molecular Structure, 2022, 1262, 133086.	3.6	3
57	Stepwise and Self-Assembly Synthesis of Tetranuclear Iron-Thiolate-Diisocyanide Metallocyclophane Complexes. Journal of the Chinese Chemical Society, 2017, 64, 94-102.	1.4	2
58	Effect of new Pd(II)-aroylthiourea complex on pancreatic cancer cells. Inorganic Chemistry Communication, 2021, 134, 109018.	3.9	2
59	Importance of Binding Affinity for the Activity of a Metallodendritic Chemical Nuclease. Pharmaceutics, 2018, 10, 258.	4.5	1
60	27.28 Product Class 28: β-Diketimines (1,3-Diimines). , 2021, , .		0