Clayton R Butterly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629171/publications.pdf

Version: 2024-02-01

50 papers

1,928 citations

218592 26 h-index 254106 43 g-index

52 all docs 52 docs citations

times ranked

52

2075 citing authors

#	Article	IF	CITATIONS
1	Modified lignite and black coal reduce ammonia volatilization from cattle manure. Journal of Environmental Management, 2022, 301, 113807.	3.8	10
2	Elevated CO2 in semi-arid cropping systems: A synthesis of research from the Australian Grains Free Air CO2 Enrichment (AGFACE) research program. Advances in Agronomy, 2022, , 1-73.	2.4	3
3	Surface modification of coal tailings by thermal air oxidation for ammonia capture. Journal of Cleaner Production, 2022, 362, 132525.	4.6	4
4	Alkalinity movement down acid soil columns was faster when lime and plant residues were combined than when either was applied separately. European Journal of Soil Science, 2021, 72, 313-325.	1.8	10
5	Impact of novel materials on alkalinity movement down acid soil profiles when combined with lime. Journal of Soils and Sediments, 2021, 21, 52-62.	1.5	12
6	Adsorbent materials for ammonium and ammonia removal: A review. Journal of Cleaner Production, 2021, 283, 124611.	4.6	129
7	Effects of Exotic <i>Spartina alterniflora</i> Invasion on Soil Phosphorus and Carbon Pools and Associated Soil Microbial Community Composition in Coastal Wetlands. ACS Omega, 2021, 6, 5730-5738.	1.6	11
8	Liming effect of non-legume residues promotes the biological amelioration of soil acidity via nitrate uptake. Plant and Soil, 2021, 464, 63-73.	1.8	4
9	Combined nitrate and phosphorus application promotes rhizosphere alkalization and nitrogen uptake by wheat but not canola in acid subsoils. Journal of Soils and Sediments, 2021, 21, 2995-3006.	1.5	1
10	Biochars and their feedstocks differ in their short-term effects in ameliorating acid soils grown with aluminium-sensitive wheat. Journal of Soils and Sediments, 2021, 21, 2805-2816.	1.5	7
11	Liming and priming: the long-term impact of pH amelioration on mineralisation may negate carbon sequestration gains Soil Security, 2021, 3, 100007.	1.2	7
12	Lignite, dewatered lignite and modified subbituminous coal reduce nitrogen loss from broiler litter. Waste Management, 2021, 136, 113-121.	3.7	7
13	An agricultural practise with climate and food security benefits: "Claying―with kaolinitic clay subsoil decreased soil carbon priming and mineralisation in sandy cropping soils. Science of the Total Environment, 2020, 709, 134488.	3.9	9
14	Effectiveness of innovative organic amendments in acid soils depends on their ability to supply P and alleviate Al and Mn toxicity in plants. Journal of Soils and Sediments, 2020, 20, 3951-3962.	1.5	16
15	Lignite as additives accelerates the removal of antibiotic resistance genes during poultry litter composting. Bioresource Technology, 2020, 315, 123841.	4.8	19
16	Enhanced nitrogen retention by lignite during poultry litter composting. Journal of Cleaner Production, 2020, 277, 122422.	4.6	36
17	Gas emissions during cattle manure composting and stockpiling. Journal of Environmental Quality, 2020, 49, 228-235.	1.0	24
18	Effects of fertilizer types on nitrogen and phosphorous loss from rice-wheat rotation system in the Taihu Lake region of China. Agriculture, Ecosystems and Environment, 2019, 285, 106605.	2.5	43

#	Article	IF	Citations
19	Spectroscopic evidence for hyperthermophilic pretreatment intensifying humification during pig manure and rice straw composting. Bioresource Technology, 2019, 294, 122131.	4.8	61
20	Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO2. Biology and Fertility of Soils, 2019, 55, 17-29.	2.3	10
21	Interactive effects of initial pH and nitrogen status on soil organic carbon priming by glucose and lignocellulose. Soil Biology and Biochemistry, 2018, 123, 33-44.	4.2	54
22	Fertilization alters microbial community composition and functional patterns by changing the chemical nature of soil organic carbon: A field study in a Halosol. Geoderma, 2017, 292, 17-24.	2.3	37
23	Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH. Science of the Total Environment, 2017, 587-588, 502-509.	3.9	50
24	The short-term effects of liming on organic carbon mineralisation in two acidic soils as affected by different rates and application depths of lime. Biology and Fertility of Soils, 2017, 53, 431-443.	2.3	49
25	Residue addition and liming history interactively enhance mineralization of native organic carbon in acid soils. Biology and Fertility of Soils, 2017, 53, 61-75.	2.3	35
26	Long-term effect of lime application on the chemical composition of soil organic carbon in acid soils varying in texture and liming history. Biology and Fertility of Soils, 2016, 52, 295-306.	2.3	35
27	Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. Soil Biology and Biochemistry, 2016, 97, 157-167.	4.2	65
28	Surface Amendments Can Ameliorate Subsoil Acidity in Tea Garden Soils of High-Rainfall Environments. Pedosphere, 2016, 26, 180-191.	2.1	13
29	Elevated CO2 induced rhizosphere effects on the decomposition and N recovery from crop residues. Plant and Soil, 2016, 408, 55-71.	1.8	7
30	Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytologist, 2016, 211, 864-873.	3.5	114
31	Effects of fertilization practices on aluminum fractions and species in a wheat soil. Journal of Soils and Sediments, 2016, 16, 1933-1943.	1.5	24
32	Free-air CO ₂ enrichment (FACE) reduces the inhibitory effect of soil nitrate on N ₂ fixation of <i>Pisum sativum</i> . Annals of Botany, 2016, 117, 177-185.	1.4	30
33	Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant and Soil, 2015, 391, 367-382.	1.8	71
34	Factors affecting the measurement of soil <scp>pH</scp> buffer capacity: approaches to optimize the methods. European Journal of Soil Science, 2015, 66, 53-64.	1.8	59
35	Organic anion-to-acid ratio influences pH change of soils differing in initial pH. Journal of Soils and Sediments, 2014, 14, 407-414.	1.5	44
36	Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use and Management, 2014, 30, 119-128.	2.6	87

3

#	Article	IF	CITATIONS
37	Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant and Soil, 2013, 368, 315-328.	1.8	38
38	The contribution of crop residues to changes in soil pH under field conditions. Plant and Soil, 2013, 366, 185-198.	1.8	112
39	pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime. Journal of Soils and Sediments, 2013, 13, 654-663.	1.5	27
40	Soil organic carbon contributes to alkalinity priming induced by added organic substrates. Soil Biology and Biochemistry, 2013, 65, 217-226.	4.2	16
41	Use of crop residues with alkaline slag to ameliorate soil acidity in an Ultisol. Soil Use and Management, 2012, 28, 148-156.	2.6	16
42	Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralisation. Soil Biology and Biochemistry, 2012, 51, 35-43.	4.2	54
43	Contribution of soluble and insoluble fractions of agricultural residues to short-term pH changes. European Journal of Soil Science, 2011, 62, 718-727.	1.8	41
44	Changes in water content of two agricultural soils does not alter labile P and C pools. Plant and Soil, 2011, 348, 185-201.	1.8	10
45	Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biology and Fertility of Soils, 2011, 47, 51-62.	2.3	62
46	Rapid changes in carbon and phosphorus after rewetting of dry soil. Biology and Fertility of Soils, 2011, 47, 41-50.	2.3	55
47	Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties. Biology and Fertility of Soils, 2010, 46, 739-753.	2.3	78
48	Soil Microbial Biomass and pH as Affected by the Addition of Plant Residues. , 2010, , 320-322.		4
49	Carbon Compounds Differ in Their Effects on Soil pH and Microbial Respiration., 2010,, 331-333.		2
50	Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41, 1406-1416.	4.2	215