Nobuyuki Takegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3628572/publications.pdf

Version: 2024-02-01

516710 434195 2,990 31 16 31 citations h-index g-index papers 35 35 35 3247 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Current situation of atmospheric nanoparticles in Fukue Island, Japan. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1498688.	1.6	4
2	A new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by thermal desorption aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 833-844.	3.1	1
3	Development of a novel particle mass spectrometer for online measurements of refractory sulfate aerosols. Aerosol Science and Technology, 2021, 55, 371-386.	3.1	1
4	Characteristics of sub-10 nm particle emissions from in-use commercial aircraft observed at Narita International Airport. Atmospheric Chemistry and Physics, 2021, 21, 1085-1104.	4.9	10
5	Mixing State of Black Carbon Particles in Asian Outflow Observed at a Remote Site in Taiwan in the Spring of 2017. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032526.	3.3	1
6	Enhanced New Particle Formation Above the Marine Boundary Layer Over the Yellow Sea: Potential Impacts on Cloud Condensation Nuclei. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031448.	3. 3	12
7	Ionization efficiency of evolved gas molecules from aerosol particles in a thermal desorption aerosol mass spectrometer: Numerical simulations. Aerosol Science and Technology, 2019, 53, 843-852.	3.1	5
8	Identification of jet lubrication oil as a major component of aircraft exhaust nanoparticles. Atmospheric Chemistry and Physics, 2019, 19, 6389-6399.	4.9	32
9	Calibration of a particle mass spectrometer using polydispersed aerosol particles. Aerosol Science and Technology, 2019, 53, 1-7.	3.1	7
10	lonization efficiency of evolved gas molecules from aerosol particles in a thermal desorption aerosol mass spectrometer: Laboratory experiments. Aerosol Science and Technology, 2019, 53, 86-93.	3.1	5
11	Modification and laboratory evaluation of a TSI ultrafine condensation particle counter (Model 3776) for airborne measurements. Aerosol Science and Technology, 2017, 51, 235-245.	3.1	16
12	Effects of wet deposition on the abundance and size distribution of black carbon in East Asia. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4691-4712.	3.3	34
13	Evaluation of a particle trap laser desorption mass spectrometer (PT-LDMS) for the quantification of sulfate aerosols. Aerosol Science and Technology, 2016, 50, 173-186.	3.1	6
14	Groundâ€based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential impacts of nonbiological materials on autofluorescence measurements of airborne particles. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1171-1185.	3.3	19
15	Variability of aerosol particle number concentrations observed over the western Pacific in the spring of 2009. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,474.	3.3	9
16	A New Laser Induced Incandescence–Mass Spectrometric Analyzer (LII-MS) for Online Measurement of Aerosol Composition Classified by Black Carbon Mixing State. Aerosol Science and Technology, 2014, 48, 853-863.	3.1	9
17	Case study of absorption aerosol optical depth closure of black carbon over the East China Sea. Journal of Geophysical Research D: Atmospheres, 2014, 119, 122-136.	3.3	19
18	Condensation Particle Counters Combined with a Low-Pressure Impactor for Fast Measurement of Mode-Segregated Aerosol Number Concentration. Aerosol Science and Technology, 2013, 47, 1059-1065.	3.1	8

#	Article	IF	CITATIONS
19	Vertical transport mechanisms of black carbon over East Asia in spring during the Aâ€FORCE aircraft campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,175.	3.3	30
20	Spatial and temporal variations of new particle formation in East Asia using an NPFâ€explicit WRFâ€ehem model: Northâ€south contrast in new particle formation frequency. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,647.	3.3	35
21	Evaluation of a New Particle Trap in a Laser Desorption Mass Spectrometer for Online Measurement of Aerosol Composition. Aerosol Science and Technology, 2012, 46, 428-443.	3.1	12
22	Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere. Geophysical Research Letters, 2012, 39, .	4.0	86
23	Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East Asia (Aâ€FORCE) aircraft campaign. Journal of Geophysical Research, 2012, 117, .	3.3	108
24	Measurements of regionalâ€scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current. Journal of Geophysical Research, 2012, 117, .	3. 3	28
25	Emissions of black carbon in East Asia estimated from observations at a remote site in the East China Sea. Journal of Geophysical Research, 2011, 116, .	3.3	76
26	Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence, Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques. Aerosol Science and Technology, 2011, 45, 295-312.	3.1	194
27	Laboratory Evaluation of a TSI Condensation Particle Counter (Model 3771) Under Airborne Measurement Conditions. Aerosol Science and Technology, 2011, 45, 272-283.	3.1	35
28	Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. Journal of Geophysical Research, 2009, 114 , .	3.3	50
29	Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China. Journal of Geophysical Research, 2009, 114 , .	3.3	186
30	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .	4.0	1,773
31	Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments. Aerosol Science and Technology, 2005, 39, 760-770.	3.1	179