Karunesh Ganguly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626712/publications.pdf

Version: 2024-02-01

257450 254184 4,051 46 24 43 citations g-index h-index papers 50 50 50 4416 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements. Neuron, 2022, 110, 154-174.e12.	8.1	19
2	Recovery of consolidation after sleep following strokeâ€"interaction of slow waves, spindles, and GABA. Cell Reports, 2022, 38, 110426.	6.4	7
3	Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration. Nature Communications, 2022, 13, 2450.	12.8	8
4	Plug-and-play control of a brain–computer interface through neural map stabilization. Nature Biotechnology, 2021, 39, 326-335.	17.5	60
5	Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell, 2021, 184, 912-930.e20.	28.9	41
6	Coordinated increase of reliable cortical and striatal ensemble activations during recovery after stroke. Cell Reports, 2021, 36, 109370.	6.4	16
7	Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria. New England Journal of Medicine, 2021, 385, 217-227.	27.0	209
8	Coupling between motor cortex and striatum increases during sleep over long-term skill learning. ELife, 2021, 10, .	6.0	22
9	Timescales of local and cross-area interactions during neuroprosthetic learning. Journal of Neuroscience, 2021, 41, JN-RM-1397-21.	3.6	1
10	Cellular-scale silicon probes for high-density, precisely localized neurophysiology. Journal of Neurophysiology, 2020, 124, 1578-1587.	1.8	11
11	Single-trial cross-area neural population dynamics during long-term skill learning. Nature Communications, 2020, 11, 4057.	12.8	35
12	The Degree of Nesting between Spindles and Slow Oscillations Modulates Neural Synchrony. Journal of Neuroscience, 2020, 40, 4673-4684.	3.6	22
13	A consensus statement: defining terms for reactivation analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200001.	4.0	30
14	Competing Roles of Slow Oscillations and Delta Waves in Memory Consolidation versus Forgetting. Cell, 2019, 179, 514-526.e13.	28.9	159
15	Emergent modular neural control drives coordinated motor actions. Nature Neuroscience, 2019, 22, 1122-1131.	14.8	80
16	Large-scale changes in cortical dynamics triggered by repetitive somatosensory electrical stimulation. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 59.	4.6	6
17	Shaping Reality through Mental Rehearsal. Neuron, 2018, 97, 998-1000.	8.1	2
18	Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke. Nature Medicine, 2018, 24, 1257-1267.	30.7	92

#	Article	IF	CITATIONS
19	Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control. Neuron, 2017, 93, 955-970.e5.	8.1	86
20	Neural reactivations during sleep determine network credit assignment. Nature Neuroscience, 2017, 20, 1277-1284.	14.8	88
21	Effects of somatosensory electrical stimulation on motor function and cortical oscillations. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 113.	4.6	28
22	Muscle synergies after stroke are correlated with perilesional high gamma. Annals of Clinical and Translational Neurology, 2016, 3, 956-961.	3.7	21
23	Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation. PLoS Biology, 2015, 13, e1002263.	5 . 6	149
24	Robust Neuroprosthetic Control from the Stroke Perilesional Cortex. Journal of Neuroscience, 2015, 35, 8653-8661.	3.6	55
25	Cortical neuroprosthetics from a clinical perspective. Neurobiology of Disease, 2015, 83, 154-160.	4.4	14
26	An automated behavioral box to assess forelimb function in rats. Journal of Neuroscience Methods, 2015, 246, 30-37.	2.5	41
27	Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nature Neuroscience, 2014, 17, 1107-1113.	14.8	116
28	Activity-Dependent Neural Plasticity from Bench to Bedside. Neuron, 2013, 80, 729-741.	8.1	158
29	Neurorehabilitation: Motor recovery after stroke as an example. Annals of Neurology, 2013, 74, 373-381.	5. 3	24
30	Detecting event-related changes of multivariate phase coupling in dynamic brain networks. Journal of Neurophysiology, 2012, 107, 2020-2031.	1.8	23
31	Task-Dependent Changes in Cross-Level Coupling between Single Neurons and Oscillatory Activity in Multiscale Networks. PLoS Computational Biology, 2012, 8, e1002809.	3.2	52
32	Management of Chronic Myelopathy Symptoms and Activities of Daily Living. Seminars in Neurology, 2012, 32, 161-168.	1.4	1
33	Redundant information encoding in primary motor cortex during natural and prosthetic motor control. Journal of Computational Neuroscience, 2012, 32, 555-561.	1.0	21
34	Redundant information encoding in primary motor cortex during motor tasks. , 2011, , .		0
35	Reversible large-scale modification of cortical networks during neuroprosthetic control. Nature Neuroscience, 2011, 14, 662-667.	14.8	237
36	System Architecture for Stiffness Control in Brain–Machine Interfaces. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2010, 40, 732-742.	2.9	7

#	Article	IF	CITATIONS
37	Learning in Closed-Loop Brain–Machine Interfaces: Modeling and Experimental Validation. IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40, 1387-1397.	5.0	46
38	Neural Correlates of Skill Acquisition with a Cortical Brain–Machine Interface. Journal of Motor Behavior, 2010, 42, 355-360.	0.9	45
39	Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17356-17361.	7.1	251
40	Modeling and experimental validation of the learning process during closed-loop BMI operation. , 2009, , .		1
41	Cortical Representation of Ipsilateral Arm Movements in Monkey and Man. Journal of Neuroscience, 2009, 29, 12948-12956.	3.6	134
42	Emergence of a Stable Cortical Map for Neuroprosthetic Control. PLoS Biology, 2009, 7, e1000153.	5 . 6	469
43	Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12348-12353.	7.1	67
44	Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Clâ [^] Transporter Activity. Neuron, 2003, 39, 807-820.	8.1	375
45	GABA Itself Promotes the Developmental Switch of Neuronal GABAergic Responses from Excitation to Inhibition. Cell, 2001, 105, 521-532.	28.9	602
46	Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nature Neuroscience, 2000, 3, 1018-1026.	14.8	119