
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential. Cell Reports, 2022, 38, 110234.	6.4	15
2	Working to enhance the accessibility of Disease Models & Mechanisms. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	2
3	Long-term non-invasive drug treatments in adult zebrafish that lead to melanoma drug resistance. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	12
4	Aldh2 is a lineage-specific metabolic gatekeeper in melanocyte stem cells. Development (Cambridge), 2022, 149, .	2.5	4
5	The twin pillars of Disease Models & Mechanisms. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	8
6	Welcoming new Editors to Disease Models & Mechanisms. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	0
7	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
8	Deciphering Melanoma Cell States and Plasticity with Zebrafish Models. Journal of Investigative Dermatology, 2021, 141, 1389-1394.	0.7	16
9	Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nature Reviews Drug Discovery, 2021, 20, 611-628.	46.4	192
10	Models and Mechanisms for COVID-19 Research. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	1
11	Synergistic melanoma cell death mediated by inhibition of both MCL1 and BCL2 in high-risk tumors driven by NF1/PTEN loss. Oncogene, 2021, 40, 5718-5729.	5.9	1
12	Developmental disorders Journal Meeting: a collaboration between Development and Disease Models & Mechanisms. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	0
13	MITF reprograms the extracellular matrix and focal adhesion in melanoma. ELife, 2021, 10, .	6.0	45
14	PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation. Developmental Cell, 2020, 54, 317-332.e9.	7.0	30
15	Spontaneously occurring melanoma in animals and their relevance to human melanoma. Journal of Pathology, 2020, 252, 4-21.	4.5	36
16	Fgfr3 Is a Positive Regulator of Osteoblast Expansion and Differentiation During Zebrafish Skull Vault Development. Journal of Bone and Mineral Research, 2020, 35, 1782-1797.	2.8	18
17	Supporting women in science at <scp>PCMR</scp> . Pigment Cell and Melanoma Research, 2019, 32, 484-485.	3.3	0
18	Zebrafish MITF-Low Melanoma Subtype Models Reveal Transcriptional Subclusters and MITF-Independent Residual Disease. Cancer Research, 2019, 79, 5769-5784.	0.9	36

#	Article	IF	CITATIONS
19	Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish. PLoS Genetics, 2019, 15, e1007941.	3.5	22
20	Spotlight on zebrafish: the next wave of translational research. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	35
21	ALDH1 Bio-activates Nifuroxazide to Eradicate ALDHHigh Melanoma-Initiating Cells. Cell Chemical Biology, 2018, 25, 1456-1469.e6.	5.2	43
22	Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair. ELife, 2018, 7, .	6.0	21
23	Bright insights into palladium-triggered local chemotherapy. Chemical Science, 2018, 9, 7354-7361.	7.4	75
24	BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8668-E8677.	7.1	50
25	Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. Journal of Clinical Investigation, 2018, 128, 1496-1508.	8.2	191
26	Notochord Injury Assays that Stimulate Transcriptional Responses in Zebrafish Larvae. Bio-protocol, 2018, 8, e3100.	0.4	5
27	Fishing for ancestry. ELife, 2018, 7, .	6.0	1
28	Location, Location, Location: Spatio-Temporal Cues That Define the Cell of Origin in Melanoma. Cell Stem Cell, 2017, 21, 559-561.	11.1	7
29	Red alert about lipid's role in skin cancer. Nature, 2017, 549, 337-339.	27.8	1
30	Loss of the chromatin modifier Kdm2aa causes BrafV600E-independent spontaneous melanoma in zebrafish. PLoS Genetics, 2017, 13, e1006959.	3.5	13
31	Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis. Journal of Investigative Dermatology, 2016, 136, 770-778.	0.7	144
32	Rapid Discovery and Structure–Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase. Journal of Medicinal Chemistry, 2016, 59, 4697-4710.	6.4	52
33	Crossâ€species models of human melanoma. Journal of Pathology, 2016, 238, 152-165.	4.5	65
34	Melanoma Regression and Recurrence in Zebrafish. Methods in Molecular Biology, 2016, 1451, 143-153.	0.9	6
35	Erratum. Methods in Molecular Biology, 2016, 1451, E1-E1.	0.9	0
36	Going forward together: cooperative invasion in melanoma. Pigment Cell and Melanoma Research, 2015, 28, 6-7.	3.3	4

#	Article	IF	CITATIONS
37	MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish. Chemistry and Biology, 2015, 22, 1335-1346.	6.0	31
38	The melanocyte lineage in development and disease. Development (Cambridge), 2015, 142, 620-632.	2.5	286
39	Temperatureâ€sensitive splicing of <i>mitfa</i> by an intron mutation in zebrafish. Pigment Cell and Melanoma Research, 2015, 28, 229-232.	3.3	31
40	A Conditional Zebrafish MITF Mutation Reveals MITF Levels Are Critical for Melanoma Promotion vs. Regression In Vivo. Journal of Investigative Dermatology, 2014, 134, 133-140.	0.7	86
41	Spotlight on Zebrafish: Translational Impact. DMM Disease Models and Mechanisms, 2014, 7, 731-733.	2.4	17
42	Ian Jackson. Pigment Cell and Melanoma Research, 2014, 27, 145-145.	3.3	0
43	Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nature Communications, 2014, 5, 3277.	12.8	264
44	N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture. Frontiers in Chemistry, 2014, 2, 56.	3.6	22
45	Spotlight on Zebrafish: Translational Impact. Development (Cambridge), 2014, 141, e1405-e1405.	2.5	0
46	Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration. Developmental Cell, 2013, 25, 478-491.	7.0	110
47	The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. Genome Biology, 2013, 14, R113.	9.6	40
48	Continual and partial MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish. DMM Disease Models and Mechanisms, 2012, 5, 546-52.	2.4	44
49	ALDH2 Mediates 5-Nitrofuran Activity in Multiple Species. Chemistry and Biology, 2012, 19, 883-892.	6.0	46
50	Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment Cell and Melanoma Research, 2012, 25, 131-143.	3.3	60
51	Live imaging in zebrafish reveals neu(trophil) insight into the metastatic niche. Journal of Pathology, 2012, 227, 381-384.	4.5	4
52	Generating and Analyzing Fish Models of Melanoma. Methods in Cell Biology, 2011, 105, 339-366.	1.1	30
53	Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf. Development (Cambridge), 2011, 138, 3579-3589.	2.5	44
54	Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads. Cell Communication and Signaling, 2010, 8, 11.	6.5	84

#	Article	IF	CITATIONS
55	Combined zebrafish-yeast chemical-genetic screens reveal gene–copper-nutrition interactions that modulate melanocyte pigmentation. DMM Disease Models and Mechanisms, 2010, 3, 639-651.	2.4	41
56	Genetic and environmental melanoma models in fish. Pigment Cell and Melanoma Research, 2010, 23, 314-337.	3.3	61
57	Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Genetics, 2009, 18, 2543-2554.	2.9	89
58	Chapter 1 Genetic Models of Cancer in Zebrafish. International Review of Cell and Molecular Biology, 2008, 271, 1-34.	3.2	99
59	The INT6 Cancer Gene and MEK Signaling Pathways Converge during Zebrafish Development. PLoS ONE, 2007, 2, e959.	2.5	16
60	BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Current Biology, 2005, 15, 249-254.	3.9	626
61	Taking Human Cancer Genes to the Fish: A Transgenic Model of Melanoma in Zebrafish. Zebrafish, 2005, 1, 363-368.	1.1	27
62	The art and design of genetic screens: zebrafish. Nature Reviews Genetics, 2001, 2, 956-966.	16.3	425
63	Tfap2b Specifies an Embryonic Melanocyte Stem Cell That Retains Adult Multi-Fate Potential. SSRN Electronic Journal, 0, , .	0.4	1