E Elizabeth Patton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626255/publications.pdf

Version: 2024-02-01

63 papers 3,952 citations

30 h-index 138484 58 g-index

77 all docs

77 docs citations

77 times ranked

5810 citing authors

#	Article	IF	CITATIONS
1	BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with p53 in the Genesis of Melanoma. Current Biology, 2005, 15, 249-254.	3.9	626
2	The art and design of genetic screens: zebrafish. Nature Reviews Genetics, 2001, 2, 956-966.	16.3	425
3	The melanocyte lineage in development and disease. Development (Cambridge), 2015, 142, 620-632.	2.5	286
4	Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nature Communications, 2014, 5, 3277.	12.8	264
5	Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nature Reviews Drug Discovery, 2021, 20, 611-628.	46.4	192
6	Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. Journal of Clinical Investigation, 2018, 128, 1496-1508.	8.2	191
7	Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis. Journal of Investigative Dermatology, 2016, 136, 770-778.	0.7	144
8	Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration. Developmental Cell, 2013, 25, 478-491.	7.0	110
9	Chapter 1 Genetic Models of Cancer in Zebrafish. International Review of Cell and Molecular Biology, 2008, 271, 1-34.	3.2	99
10	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
		10.0	
11	Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Genetics, 2009, 18, 2543-2554.	2.9	89
11	zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Genetics,		89
	zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Genetics, 2009, 18, 2543-2554. A Conditional Zebrafish MITF Mutation Reveals MITF Levels Are Critical for Melanoma Promotion vs.	2.9	
12	zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Genetics, 2009, 18, 2543-2554. A Conditional Zebrafish MITF Mutation Reveals MITF Levels Are Critical for Melanoma Promotion vs. Regression In Vivo. Journal of Investigative Dermatology, 2014, 134, 133-140. Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and	2.9	86
12	zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Génetics, 2009, 18, 2543-2554. A Conditional Zebrafish MITF Mutation Reveals MITF Levels Are Critical for Melanoma Promotion vs. Regression In Vivo. Journal of Investigative Dermatology, 2014, 134, 133-140. Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads. Cell Communication and Signaling, 2010, 8, 11.	2.9 0.7 6.5	86
12 13 14	zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Genetics, 2009, 18, 2543-2554. A Conditional Zebrafish MITF Mutation Reveals MITF Levels Are Critical for Melanoma Promotion vs. Regression In Vivo. Journal of Investigative Dermatology, 2014, 134, 133-140. Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads. Cell Communication and Signaling, 2010, 8, 11. Bright insights into palladium-triggered local chemotherapy. Chemical Science, 2018, 9, 7354-7361.	2.9 0.7 6.5 7.4	86 84 75
12 13 14 15	zebrafish development and are sensitive to small molecule inhibitors. Human Molecular Genetics, 2009, 18, 2543-2554. A Conditional Zebrafish MITF Mutation Reveals MITF Levels Are Critical for Melanoma Promotion vs. Regression In Vivo. Journal of Investigative Dermatology, 2014, 134, 133-140. Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads. Cell Communication and Signaling, 2010, 8, 11. Bright insights into palladium-triggered local chemotherapy. Chemical Science, 2018, 9, 7354-7361. Crossâ€species models of human melanoma. Journal of Pathology, 2016, 238, 152-165. Genetic and environmental melanoma models in fish. Pigment Cell and Melanoma Research, 2010, 23,	2.9 0.7 6.5 7.4	86 84 75

#	Article	IF	CITATIONS
19	BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8668-E8677.	7.1	50
20	ALDH2 Mediates 5-Nitrofuran Activity in Multiple Species. Chemistry and Biology, 2012, 19, 883-892.	6.0	46
21	MITF reprograms the extracellular matrix and focal adhesion in melanoma. ELife, 2021, 10, .	6.0	45
22	Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf. Development (Cambridge), 2011, 138, 3579-3589.	2.5	44
23	Continual and partial MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish. DMM Disease Models and Mechanisms, 2012, 5, 546-52.	2.4	44
24	ALDH1 Bio-activates Nifuroxazide to Eradicate ALDHHigh Melanoma-Initiating Cells. Cell Chemical Biology, 2018, 25, 1456-1469.e6.	5.2	43
25	Combined zebrafish-yeast chemical-genetic screens reveal gene–copper-nutrition interactions that modulate melanocyte pigmentation. DMM Disease Models and Mechanisms, 2010, 3, 639-651.	2.4	41
26	The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. Genome Biology, 2013, 14, R113.	9.6	40
27	Zebrafish MITF-Low Melanoma Subtype Models Reveal Transcriptional Subclusters and MITF-Independent Residual Disease. Cancer Research, 2019, 79, 5769-5784.	0.9	36
28	Spontaneously occurring melanoma in animals and their relevance to human melanoma. Journal of Pathology, 2020, 252, 4-21.	4.5	36
29	Spotlight on zebrafish: the next wave of translational research. DMM Disease Models and Mechanisms, $2019,12,.$	2.4	35
30	MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish. Chemistry and Biology, 2015, 22, 1335-1346.	6.0	31
31	Temperatureâ€sensitive splicing of <i>mitfa</i> by an intron mutation in zebrafish. Pigment Cell and Melanoma Research, 2015, 28, 229-232.	3.3	31
32	Generating and Analyzing Fish Models of Melanoma. Methods in Cell Biology, 2011, 105, 339-366.	1.1	30
33	PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation. Developmental Cell, 2020, 54, 317-332.e9.	7.0	30
34	Taking Human Cancer Genes to the Fish: A Transgenic Model of Melanoma in Zebrafish. Zebrafish, 2005, 1, 363-368.	1.1	27
35	N-alkynyl derivatives of 5-fluorouracil: susceptibility to palladium-mediated dealkylation and toxigenicity in cancer cell culture. Frontiers in Chemistry, 2014, 2, 56.	3.6	22
36	Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish. PLoS Genetics, 2019, 15, e1007941.	3.5	22

#	Article	IF	Citations
37	Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair. ELife, $2018, 7, .$	6.0	21
38	Fgfr3 Is a Positive Regulator of Osteoblast Expansion and Differentiation During Zebrafish Skull Vault Development. Journal of Bone and Mineral Research, 2020, 35, 1782-1797.	2.8	18
39	Spotlight on Zebrafish: Translational Impact. DMM Disease Models and Mechanisms, 2014, 7, 731-733.	2.4	17
40	The INT6 Cancer Gene and MEK Signaling Pathways Converge during Zebrafish Development. PLoS ONE, 2007, 2, e959.	2.5	16
41	Deciphering Melanoma Cell States and Plasticity with Zebrafish Models. Journal of Investigative Dermatology, 2021, 141, 1389-1394.	0.7	16
42	Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential. Cell Reports, 2022, 38, 110234.	6.4	15
43	Loss of the chromatin modifier Kdm2aa causes BrafV600E-independent spontaneous melanoma in zebrafish. PLoS Genetics, 2017, 13, e1006959.	3.5	13
44	Long-term non-invasive drug treatments in adult zebrafish that lead to melanoma drug resistance. DMM Disease Models and Mechanisms, 2022, 15 , .	2.4	12
45	The twin pillars of Disease Models & Dechanisms. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	8
46	Location, Location, Location: Spatio-Temporal Cues That Define the Cell of Origin in Melanoma. Cell Stem Cell, 2017, 21, 559-561.	11.1	7
47	Melanoma Regression and Recurrence in Zebrafish. Methods in Molecular Biology, 2016, 1451, 143-153.	0.9	6
48	Notochord Injury Assays that Stimulate Transcriptional Responses in Zebrafish Larvae. Bio-protocol, 2018, 8, e3100.	0.4	5
49	Live imaging in zebrafish reveals neu(trophil) insight into the metastatic niche. Journal of Pathology, 2012, 227, 381-384.	4.5	4
50	Going forward together: cooperative invasion in melanoma. Pigment Cell and Melanoma Research, 2015, 28, 6-7.	3.3	4
51	Aldh2 is a lineage-specific metabolic gatekeeper in melanocyte stem cells. Development (Cambridge), 2022, 149, .	2.5	4
52	Working to enhance the accessibility of Disease Models & Mechanisms. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	2
53	Red alert about lipid's role in skin cancer. Nature, 2017, 549, 337-339.	27.8	1
54	Tfap2b Specifies an Embryonic Melanocyte Stem Cell That Retains Adult Multi-Fate Potential. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	Citations
55	Models and Mechanisms for COVID-19 Research. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	1
56	Synergistic melanoma cell death mediated by inhibition of both MCL1 and BCL2 in high-risk tumors driven by NF1/PTEN loss. Oncogene, 2021, 40, 5718-5729.	5.9	1
57	Fishing for ancestry. ELife, 2018, 7, .	6.0	1
58	Ian Jackson. Pigment Cell and Melanoma Research, 2014, 27, 145-145.	3.3	0
59	Supporting women in science at <scp>PCMR</scp> . Pigment Cell and Melanoma Research, 2019, 32, 484-485.	3.3	0
60	Welcoming new Editors to Disease Models & Mechanisms. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	0
61	Developmental disorders Journal Meeting: a collaboration between Development and Disease Models & Mechanisms. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	0
62	Spotlight on Zebrafish: Translational Impact. Development (Cambridge), 2014, 141, e1405-e1405.	2.5	0
63	Erratum. Methods in Molecular Biology, 2016, 1451, E1-E1.	0.9	O