## Wolfram Liebermeister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3625318/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | BioSimulators: a central registry of simulation engines and services for recommending specific tools.<br>Nucleic Acids Research, 2022, 50, W108-W114.                                                                                             | 14.5 | 11        |
| 2  | Structural Thermokinetic Modelling. Metabolites, 2022, 12, 434.                                                                                                                                                                                   | 2.9  | 2         |
| 3  | Model Balancing: A Search for In-Vivo Kinetic Constants and Consistent Metabolic States. Metabolites, 2021, 11, 749.                                                                                                                              | 2.9  | 3         |
| 4  | Clb3-centered regulations are recurrent across distinct parameter regions in minimal autonomous cell cycle oscillator designs. Npj Systems Biology and Applications, 2020, 6, 8.                                                                  | 3.0  | 9         |
| 5  | <scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models.<br>Molecular Systems Biology, 2020, 16, e9110.                                                                                                     | 7.2  | 178       |
| 6  | Automated generation of bacterial resource allocation models. Metabolic Engineering, 2019, 55, 12-22.                                                                                                                                             | 7.0  | 41        |
| 7  | Parameter balancing: consistent parameter sets for kinetic metabolic models. Bioinformatics, 2019, 35, 3857-3858.                                                                                                                                 | 4.1  | 9         |
| 8  | Notions of similarity for systems biology models. Briefings in Bioinformatics, 2018, 19, bbw090.                                                                                                                                                  | 6.5  | 17        |
| 9  | Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS<br>Computational Biology, 2018, 14, e1006010.                                                                                                    | 3.2  | 76        |
| 10 | Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annual<br>Review of Biochemistry, 2018, 87, 187-216.                                                                                                       | 11.1 | 106       |
| 11 | Toward Community Standards and Software for Whole-Cell Modeling. IEEE Transactions on Biomedical Engineering, 2016, 63, 2007-2014.                                                                                                                | 4.2  | 51        |
| 12 | SBtab: a flexible table format for data exchange in systems biology. Bioinformatics, 2016, 32, 2559-2561.                                                                                                                                         | 4.1  | 31        |
| 13 | Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro<br><i>k</i> <sub>cat</sub> measurements. Proceedings of the National Academy of Sciences of the United<br>States of America, 2016, 113, 3401-3406. | 7.1  | 212       |
| 14 | The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.<br>PLoS Computational Biology, 2016, 12, e1005167.                                                                                               | 3.2  | 144       |
| 15 | SBML Level 3 package: Hierarchical Model Composition, Version 1 Release 3. Journal of Integrative Bioinformatics, 2015, 12, 603-659.                                                                                                              | 1.5  | 39        |
| 16 | SBML Level 3 package: Hierarchical Model Composition, Version 1 Release 3. Journal of Integrative Bioinformatics, 2015, 12, 268.                                                                                                                  | 1.5  | 31        |
| 17 | Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism. PLoS Computational Biology, 2014, 10, e1003483.                                                                                                                        | 3.2  | 249       |
| 18 | Visual account of protein investment in cellular functions. Proceedings of the National Academy of<br>Sciences of the United States of America, 2014, 111, 8488-8493.                                                                             | 7.1  | 304       |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A note on the kinetics of enzyme action: A decomposition that highlights thermodynamic effects. FEBS<br>Letters, 2013, 587, 2772-2777.                                            | 2.8  | 108       |
| 20 | Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Research, 2013, 41, e98-e98.                                                  | 14.5 | 165       |
| 21 | Glycolytic strategy as a tradeoff between energy yield and protein cost. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10039-10044. | 7.1  | 446       |
| 22 | Steady-State Metabolite Concentrations Reflect a Balance between Maximizing Enzyme Efficiency and<br>Minimizing Total Metabolite Load. PLoS ONE, 2013, 8, e75370.                 | 2.5  | 67        |
| 23 | Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks. PLoS ONE, 2013, 8, e79195.                                                                        | 2.5  | 102       |
| 24 | Global Network Reorganization During Dynamic Adaptations of <i>Bacillus subtilis</i> Metabolism.<br>Science, 2012, 335, 1099-1103.                                                | 12.6 | 255       |
| 25 | Propagating semantic information in biochemical network models. BMC Bioinformatics, 2012, 13, 18.                                                                                 | 2.6  | 11        |
| 26 | Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in <i>Bacillus subtilis</i> . Science, 2012, 335, 1103-1106.                                         | 12.6 | 809       |
| 27 | The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme<br>Parameters. Biochemistry, 2011, 50, 4402-4410.                                         | 2.5  | 810       |
| 28 | Sustainable Model Building. Methods in Enzymology, 2011, 500, 371-395.                                                                                                            | 1.0  | 11        |
| 29 | Retrieval, alignment, and clustering of computational models based on semantic annotations.<br>Molecular Systems Biology, 2011, 7, 512.                                           | 7.2  | 32        |
| 30 | Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.<br>Bioinformatics, 2010, 26, 1528-1534.                                               | 4.1  | 110       |
| 31 | Annotation and merging of SBML models with semanticSBML. Bioinformatics, 2010, 26, 421-422.                                                                                       | 4.1  | 88        |
| 32 | Parameter Balancing in Kinetic Models of Cell Metabolism. Journal of Physical Chemistry B, 2010, 114,<br>16298-16303.                                                             | 2.6  | 43        |
| 33 | Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model.<br>Bioinformatics, 2010, 26, i255-i260.                                         | 4.1  | 219       |
| 34 | A Quantitative Study of the Hog1 MAPK Response to Fluctuating Osmotic Stress in Saccharomyces cerevisiae. PLoS ONE, 2010, 5, e9522.                                               | 2.5  | 64        |
| 35 | Nested uncertainties in biochemical models. IET Systems Biology, 2009, 3, 1-9.                                                                                                    | 1.5  | 35        |
| 36 | A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 2008, 26, 1155-1160.                              | 17.5 | 530       |

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | EXPLORING THE EFFECT OF VARIABLE ENZYME CONCENTRATIONS IN A KINETIC MODEL OF YEAST GLYCOLYSIS. , 2008, , .                                                  |      | 7         |
| 38 | Systems biology standards—the community speaks. Nature Biotechnology, 2007, 25, 390-391.                                                                    | 17.5 | 87        |
| 39 | AUTOMATICALLY GENERATED MODEL OF A METABOLIC NETWORK. , 2007, , .                                                                                           |      | 5         |
| 40 | Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.<br>Theoretical Biology and Medical Modelling, 2006, 3, 41.         | 2.1  | 191       |
| 41 | Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data.<br>Theoretical Biology and Medical Modelling, 2006, 3, 42.      | 2.1  | 61        |
| 42 | A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006, 3, 623-628.                                    | 19.0 | 680       |
| 43 | Mathematical modeling of intracellular signaling pathways. BMC Neuroscience, 2006, 7, S10.                                                                  | 1.9  | 119       |
| 44 | SBMLmerge, a system for combining biochemical network models. Genome Informatics, 2006, 17, 62-71.                                                          | 0.4  | 21        |
| 45 | Response to temporal parameter fluctuations in biochemical networks. Journal of Theoretical<br>Biology, 2005, 234, 423-438.                                 | 1.7  | 11        |
| 46 | Biochemical network models simplified by balanced truncation. FEBS Journal, 2005, 272, 4034-4043.                                                           | 4.7  | 51        |
| 47 | Biochemical networks with uncertain parameters. IET Systems Biology, 2005, 152, 97.                                                                         | 2.0  | 47        |
| 48 | Predicting Physiological Concentrations of Metabolites from Their Molecular Structure. Journal of Computational Biology, 2005, 12, 1307-1315.               | 1.6  | 9         |
| 49 | A theory of optimal differential gene expression. BioSystems, 2004, 76, 261-278.                                                                            | 2.0  | 21        |
| 50 | Inferring dynamic properties of biochemical reaction networks from structural knowledge. Genome<br>Informatics, 2004, 15, 125-37.                           | 0.4  | 12        |
| 51 | Does mapping reveal correlation between gene expression and protein–protein interaction?. Nature<br>Genetics, 2003, 33, 15-16.                              | 21.4 | 20        |
| 52 | Linear modes of gene expression determined by independent component analysis. Bioinformatics, 2002, 18, 51-60.                                              | 4.1  | 303       |
| 53 | Ratcheting in post-translational protein translocation: a mathematical model11Edited by G. von Heijne.<br>Journal of Molecular Biology, 2001, 305, 643-656. | 4.2  | 50        |