Tomoko Kaneko-Ishino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3624725/publications.pdf

Version: 2024-02-01

34 papers 2,589 citations

304743 22 h-index 32 g-index

39 all docs 39 docs citations

39 times ranked 2799 citing authors

#	Article	IF	CITATIONS
1	The Evolutionary Advantage in Mammals of the Complementary Monoallelic Expression Mechanism of Genomic Imprinting and Its Emergence From a Defense Against the Insertion Into the Host Genome. Frontiers in Genetics, 2022, 13, 832983.	2.3	13
2	The role of eutherianâ€specific <i>RTL1</i> in the nervous system and its implications for the Kagamiâ€Ogata and Temple syndromes. Genes To Cells, 2021, 26, 165-179.	1.2	23
3	HERV-Derived Ervpb1 Is Conserved in Simiiformes, Exhibiting Expression in Hematopoietic Cell Lineages Including Macrophages. International Journal of Molecular Sciences, 2021, 22, 4504.	4.1	2
4	PEG10 viral aspartic protease domain is essential for the maintenance of fetal capillary structure in the mouse placenta. Development (Cambridge), 2021, 148, .	2.5	1
5	Deficiency and overexpression of $\langle i \rangle Rt 1 \langle i \rangle$ in the mouse cause distinct muscle abnormalities related to Temple and Kagami-Ogata syndromes. Development (Cambridge), 2020, 147, .	2.5	20
6	Evolution of viviparity in mammals: what genomic imprinting tells us about mammalian placental evolution. Reproduction, Fertility and Development, 2019, 31, 1219.	0.4	12
7	Cooperation and Competition in Mammalian Evolution., 2019,, 317-333.		O
8	Severe damage to the placental fetal capillary network causes mid―to late fetal lethality and reduction in placental size in <i>Peg11/Rtl1</i> <scp>KO</scp> mice. Genes To Cells, 2017, 22, 174-188.	1.2	46
9	Mammalian-Specific Traits Generated by LTR Retrotransposon-Derived SIRH Genes., 2017, , 129-145.		O
10	An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians. Frontiers in Chemistry, 2016, 4, 26.	3.6	13
11	Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 511-538.	3.8	32
12	Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes. Scientific Reports, 2015, 5, 12281.	3.3	45
13	Cognitive Function Related to the Sirh11/Zcchc16 Gene Acquired from an LTR Retrotransposon in Eutherians. PLoS Genetics, 2015, 11, e1005521.	3.5	37
14	A trans-homologue interaction between reciprocally imprinted <i>miR-127</i> and <i>Rtl1</i> regulates placenta development. Development (Cambridge), 2015, 142, 2425-30.	2.5	62
15	<i>Sirh7/Ldoc1</i> knockout mice exhibit placental P4 overproduction and delayed parturition. Development (Cambridge), 2014, 141, 4763-4771.	2.5	59
16	Induction of the G2/M transition stabilizes haploid embryonic stem cells. Development (Cambridge), 2014, 141, 3842-3847.	2.5	45
17	Active DNA demethylation is required for complete imprint erasure in primordial germ cells. Scientific Reports, 2014, 4, 3658.	3.3	33
18	Identification of a Novel PNMA-MS1 Gene in Marsupials Suggests the LTR Retrotransposon-Derived PNMA Genes Evolved Differently in Marsupials and Eutherians. DNA Research, 2013, 20, 425-436.	3.4	13

#	Article	IF	CITATIONS
19	The role of genes domesticated from LTR retrotransposons and retroviruses in mammals. Frontiers in Microbiology, 2012, 3, 262.	3.5	82
20	Identification of tammar wallaby SIRH12, derived from a marsupial-specific retrotransposition event. DNA Research, 2011, 18, 211-219.	3.4	23
21	Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals. Development Growth and Differentiation, 2010, 52, 533-543.	1.5	42
22	Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation. Human Molecular Genetics, 2009, 18, 1424-1438.	2.9	64
23	Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nature Genetics, 2008, 40, 243-248.	21.4	300
24	Retrotransposon Silencing by DNA Methylation Can Drive Mammalian Genomic Imprinting. PLoS Genetics, 2007, 3, e55.	3.5	181
25	Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nature Genetics, 2006, 38, 101-106.	21.4	376
26	Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochemical and Biophysical Research Communications, 2005, 329, 909-916.	2.1	70
27	Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Research, 2003, 31, 1398-1406.	14.5	105
28	The Regulation and Biological Significance of Genomic Imprinting in Mammals. Journal of Biochemistry, 2003, 133, 699-711.	1.7	95
29	A Retrotransposon-Derived Gene, PEG10, Is a Novel Imprinted Gene Located on Human Chromosome 7q21. Genomics, 2001, 73, 232-237.	2.9	236
30	Tumour suppressor activity of human imprinted gene <i>PEG3</i> in a glioma cell line. Genes To Cells, 2001, 6, 237-247.	1.2	78
31	No evidence of PEG1/MEST gene mutations in Silver-Russell syndrome patients. American Journal of Medical Genetics Part A, 2001, 104, 225-231.	2.4	31
32	Identification of an imprinted gene, <i>Meg3</i> / <i>Gtl2</i> and its human homologue <i>MEG3</i> , first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes To Cells, 2000, 5, 211-220.	1.2	343
33	MousePeg9/Dlk1and humanPEG9/DLK1are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouseMeg3/Gtl2and humanMEG3. Genes To Cells, 2000, 5, 1029-1037.	1.2	102
34	cDNA library construction and gene subtraction from a limited amount of biological materials Seibutsu Butsuri, 1998, 38, 170-173.	0.1	O