Enrico Napolitani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622778/publications.pdf

Version: 2024-02-01

214 papers

3,481 citations

31 h-index

147801

214800 47 g-index

216 all docs

216 docs citations

216 times ranked 2248 citing authors

#	Article	IF	Citations
1	N-type doping of SiC-passivated Ge by pulsed laser melting towards the development of interdigitated back contact thermophotovoltaic devices. Solar Energy Materials and Solar Cells, 2022, 235, 111463.	6.2	1
2	Laser-induced activation of Mg-doped GaN: quantitative characterization and analysis. Journal Physics D: Applied Physics, 2022, 55, 185104.	2.8	3
3	Ex-situ n-type heavy doping of Ge1-xSnx epilayers by surface Sb deposition and pulsed laser melting. Applied Surface Science, 2022, 600, 154112.	6.1	3
4	Cell formation in stanogermanides using pulsed laser thermal anneal on Ge0.91Sn0.09. Materials Science in Semiconductor Processing, 2021, 121, 105399.	4.0	8
5	Phosphorus precursors reactivity versus hydrogenated Ge surface: towards a reliable self-limited monolayer doping. Applied Surface Science, 2021, 541, 148532.	6.1	3
6	Materials science issues related to the fabrication of highly doped junctions by laser annealing of Group IV semiconductors., 2021,, 175-250.		1
7	A critical evaluation of Ag- and Ti-hyperdoped Si for Si-based infrared light detection. Journal of Applied Physics, 2021, 129, .	2.5	16
8	New method for the production of thin and stable, segmented n\$\$+\$\$ contacts in HPGe detectors. European Physical Journal A, 2021, 57, 1.	2.5	5
9	Ex-situ doping of epitaxially grown Ge on Si by ion-implantation and pulsed laser melting. Applied Surface Science, 2020, 509, 145277.	6.1	2
10	N-type heavy doping with ultralow resistivity in Ge by Sb deposition and pulsed laser melting. Applied Surface Science, 2020, 509, 145229.	6.1	19
11	p-type doping of Ge by Al ion implantation and pulsed laser melting. Applied Surface Science, 2020, 509, 145230.	6.1	5
12	Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection. AIP Advances, 2020, 10, .	1.3	7
13	N-type doping of Ge by P spin on dopant and pulsed laser melting. Semiconductor Science and Technology, 2020, 35, 065002.	2.0	4
14	Gold-Hyperdoped Germanium with Room-Temperature Sub-Band-Gap Optoelectronic Response. Physical Review Applied, 2020, 14, .	3.8	10
15	Dissolution of donor-vacancy clusters in heavily doped n-type germanium. New Journal of Physics, 2020, 22, 123036.	2.9	4
16	Self-limiting Sb monolayer as a diffusion source for Ge doping. Applied Surface Science, 2019, 496, 143713.	6.1	13
17	Characterization and modeling of thermally-induced doping contaminants in high-purity germanium. Journal Physics D: Applied Physics, 2019, 52, 035104.	2.8	11
18	High level active <i>n</i> + doping of strained germanium through co-implantation and nanosecond pulsed laser melting. Journal of Applied Physics, 2018, 123, .	2.5	12

#	Article	IF	Citations
19	Phase field model of the nanoscale evolution during the explosive crystallization phenomenon. Journal of Applied Physics, 2018, 123, .	2.5	28
20	Diffusion doping of germanium by sputtered antimony sources. Materials Science in Semiconductor Processing, 2018, 75, 118-123.	4.0	8
21	Electronic band structures of undoped and P-doped Si nanocrystals embedded in SiO ₂ . Journal of Materials Chemistry C, 2018, 6, 119-126.	5.5	8
22	Improved retention of phosphorus donors in germanium using a non-amorphizing fluorine co-implantation technique. Journal of Applied Physics, 2018, 123, 161524.	2.5	6
23	Morphological and Functional Modifications of Optical Thin Films for Space Applications Irradiated with Low-Energy Helium Ions. ACS Applied Materials & Interfaces, 2018, 10, 34781-34791.	8.0	17
24	Monolayer doping of germanium by phosphorus-containing molecules. Nanotechnology, 2018, 29, 465702.	2.6	14
25	Nanoscale measurements of phosphorous-induced lattice expansion in nanosecond laser annealed germanium. APL Materials, 2018, 6, 058504.	5.1	10
26	Pulsed laser diffusion of thin hole-barrier contacts in high purity germanium for gamma radiation detectors. European Physical Journal A, 2018, 54, 1.	2.5	10
27	Indiffusion of oxygen in germanium induced by pulsed laser melting. Materials Science in Semiconductor Processing, 2018, 88, 93-96.	4.0	6
28	Formation of F6V2 complexes in F-implanted Ge determined by x-ray absorption near edge structure spectroscopy. Materials Science in Semiconductor Processing, 2017, 62, 205-208.	4.0	2
29	Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing. Applied Physics Letters, 2017, 110, .	3.3	27
30	Liquid-Phase Monolayer Doping of InGaAs with Si-, S-, and Sn-Containing Organic Molecular Layers. ACS Omega, 2017, 2, 1750-1759.	3.5	9
31	Laser annealing in Si and Ge: Anomalous physical aspects and modeling approaches. Materials Science in Semiconductor Processing, 2017, 62, 80-91.	4.0	25
32	Optical properties of highly n-doped germanium obtained by <i>in situ</i> doping and laser annealing. Journal Physics D: Applied Physics, 2017, 50, 465103.	2.8	28
33	<i>ln situ</i> ohmic contact formation for n-type Ge via non-equilibrium processing. Semiconductor Science and Technology, 2017, 32, 115006.	2.0	10
34	Enhanced recrystallization and dopant activation of P+ ion-implanted super-thin Ge layers by RF hydrogen plasma treatment. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	3
35	Qualification tests of optical coatings in space environment. , 2017, , .		0
36	Optimal process parameters for phosphorus spin-on-doping of germanium. Applied Surface Science, 2017, 392, 1173-1180.	6.1	18

#	Article	IF	CITATIONS
37	Impurity and defect interactions during laser thermal annealing in Ge. Journal of Applied Physics, 2016, 119, .	2.5	15
38	Hydrogen diffusion and segregation during solid phase epitaxial regrowth of preamorphized Si. Journal of Applied Physics, 2016, 119, 115103.	2.5	0
39	Modeling of phosphorus diffusion in silicon oxide and incorporation in silicon nanocrystals. Journal of Materials Chemistry C, 2016, 4, 3531-3539.	5.5	10
40	Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics. Physical Review B, 2016, 94, .	3.2	86
41	Optical components in harsh space environment. , 2016, , .		2
42	Electrical compensation via vacancy–donor complexes in arsenic-implanted and laser-annealed germanium. Applied Physics Letters, 2016, 109, .	3.3	13
43	Underground nuclear astrophysics: Why and how. European Physical Journal A, 2016, 52, 1.	2.5	30
44	Synthesis and characterization of $P\hat{i}-layer in SiO2by monolayer doping. Nanotechnology, 2016, 27, 075606.$	2.6	27
45	Oxygen behavior in germanium during melting laser thermal annealing. Materials Science in Semiconductor Processing, 2016, 42, 196-199.	4.0	12
46	Comment on "Diffusion of n-type dopants in germanium―[Appl. Phys. Rev.1, 011301 (2014)]. Applied Physics Reviews, 2015, 2, 036101.	11.3	3
47	Study of solar wind ions implantation effects in optical coatings in view of Solar Orbiter space mission operation., 2015,,.		0
48	He+ ions damage on optical coatings for solar missions. Proceedings of SPIE, 2015, , .	0.8	0
49	Thermodynamic stability of high phosphorus concentration in silicon nanostructures. Nanoscale, 2015, 7, 14469-14475.	5.6	33
50	Ion Implantation Defects and Shallow Junctions in Si and Ge. Semiconductors and Semimetals, 2015, 91, 93-122.	0.7	8
51	Effects of helium ion bombardment on metallic gold and iridium thin films. Optical Materials Express, 2015, 5, 176.	3.0	29
52	Surface properties of AZ91 magnesium alloy after PEO treatment using molybdate salts and low current densities. Applied Surface Science, 2015, 357, 1031-1039.	6.1	35
53	C ion-implanted TiO2 thin film for photocatalytic applications. Journal of Applied Physics, 2015, 117, .	2.5	35
54	Resonance strengths in the 17,18O(p, \hat{l} ±)14,15N reactions and background suppression underground. European Physical Journal A, 2015, 51, 1.	2.5	37

#	Article	IF	CITATIONS
55	N-type doping of Ge by As implantation and excimer laser annealing. Journal of Applied Physics, 2014, 115, . Underground study of the mml:math	2.5	57
56	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts><mml:mi>O</mml:mi><mml:mpre></mml:mpre><mml:none></mml:none><mml:mn>17</mml:mn></mml:mmultiscripts> <mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mi>cmml:mo>(<mml:mi>p</mml:mi>c</mml:mi></mml:mrow>	•	mml:mo> <mn< td=""></mn<>
57	Role of oxygen on the electrical activation of B in Ge by excimer laser annealing. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 122-125.	1.8	13
58	Role of ion mass on damage accumulation during ion implantation in Ge. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 118-121.	1.8	7
59	A nonâ€destructive approach for doping profiles characterization by microâ€Raman spectroscopy: the case of Bâ€implanted Ge. Journal of Raman Spectroscopy, 2014, 45, 197-201.	2.5	4
60	Effects of atmospheric pressure plasma JET treatment on aluminium alloys. Surface Engineering, 2014, 30, 636-642.	2.2	9
61	Quantification of phosphorus diffusion and incorporation in silicon nanocrystals embedded in silicon oxide. Surface and Interface Analysis, 2014, 46, 393-396.	1.8	26
62	B-doping in Ge by excimer laser annealing. Journal of Applied Physics, 2013, 113, .	2.5	37
63	On the strain induced by arsenic into silicon. , 2013, , .		O
64	Mechanisms of boron diffusion in silicon and germanium. Journal of Applied Physics, 2013, 113, .	2.5	95
65	Investigation of germanium implanted with aluminum by multi-laser micro-Raman spectroscopy. Thin Solid Films, 2013, 541, 76-78.	1.8	8
66	Extended Point Defects in Crystalline Materials: Ge and Si. Physical Review Letters, 2013, 110, 155501.	7.8	34
67	Study of carrier concentration profiles in Alâ€implanted Ge by microâ€Raman spectroscopy under different excitation wavelengths. Journal of Raman Spectroscopy, 2013, 44, 665-669.	2.5	10
68	Preface for Proceedings of SIMS XVIII, Riva del Garda, Italy, 2011. Surface and Interface Analysis, 2013, 45, 1-2.	1.8	1
69	Defect complexes in fluorine-implanted germanium. Journal Physics D: Applied Physics, 2013, 46, 505310.	2.8	11
70	(Invited) Challenges and Opportunities for Doping Control in Ge for Micro and Optoelectronics Applications. ECS Transactions, 2013, 50, 89-103.	0.5	0
71	Non-Conventional Characterization of Electrically Active Dopant Profiles in Al-Implanted Ge by Depth-Resolved Micro-Raman Spectroscopy. Applied Physics Express, 2013, 6, 042404.	2.4	5
72	Role of F on the Electrical Activation of As in Ge. ECS Journal of Solid State Science and Technology, 2012, 1, Q44-Q46.	1.8	12

#	Article	IF	CITATIONS
73	Investigation of fluorine three-dimensional redistribution during solid-phase-epitaxial–regrowth of amorphous Si. Applied Physics Letters, 2012, 101, 103113.	3.3	6
74	Anomalous transport of Sb in laser irradiated Ge. Applied Physics Letters, 2012, 101, 172110. First Direct Measurement of the millimath xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.3	22
75	display="inline"> <mml:mmultiscripts><mml:mi mathvariant="bold">O</mml:mi><mml:mprescripts ><mml:none =""><mml:mn>17</mml:mn></mml:none></mml:mprescripts </mml:mmultiscripts> <mml:mo stretchy="false">(<mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>f³</mml:mi><mml:mo) l<="" td="" tj=""><td>ETQqls1 0.</td><td>784314 rgBT</td></mml:mo)></mml:mo 	ETQqls1 0.	78 43 14 rgBT
76	Aluminium Implantation in Germanium: Uphill Diffusion, Electrical Activation, and Trapping. Applied Physics Express, 2012, 5, 021301.	2.4	16
77	The effect of surface treatment with atmospheric pressure plasma jet, generated by air, on corrosion properties of AISI 304L stainless steel. Materials Chemistry and Physics, 2012, 136, 1073-1080.	4.0	9
78	Preparation and characterisation of isotopically enriched Ta2O5 targets for nuclear astrophysics studies. European Physical Journal A, 2012, 48, 1.	2.5	43
79	Advanced characterization of carrier profiles in germanium using micro-machined contact probes. AIP Conference Proceedings, 2012, , .	0.4	0
80	Fluorine in Ge: Segregation and EOR-defects stabilization. Nuclear Instruments & Methods in Physics Research B, 2012, 282, 21-24.	1.4	16
81	Role of self-interstitials on B diffusion in Ge. Nuclear Instruments & Methods in Physics Research B, 2012, 282, 8-11.	1.4	10
82	Self-interstitials injection in crystalline Ge induced by GeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow mml:mrow=""></mml:mrow></mml:msub></mml:mrow></mml:math> nanoclusters.	3.2	11
83	Physical Review B, 2011, 84, . Erbium–oxygen interactions in crystalline silicon. Semiconductor Science and Technology, 2011, 26, 055002.	2.0	5
84	Fluorine effect on As diffusion in Ge. Journal of Applied Physics, 2011, 109, .	2.5	73
85	Defects in Ge caused by sub-amorphizing self-implantation: Formation and dissolution. Thin Solid Films, 2010, 518, 2326-2329.	1.8	1
86	Radiation enhanced diffusion of B in crystalline Ge. Thin Solid Films, 2010, 518, 2386-2389.	1.8	5
87	Boron diffusion in extrinsically doped crystalline silicon. Physical Review B, 2010, 81, .	3.2	14
88	Transient enhanced diffusion of B mediated by self-interstitials in preamorphized Ge. Applied Physics Letters, 2010, 96, .	3.3	31
89	Strain engineered segregation regimes for the fabrication of thin $Sil\hat{a}$ 'xGex layers with abrupt n-type doping. Journal of Applied Physics, 2010, 107, .	2.5	11
90	Fluorine redistribution and incorporation during solid phase epitaxy of preamorphized Si. Physical Review B, 2010, 82, .	3.2	11

#	Article	IF	CITATIONS
91	Mechanism of B diffusion in crystalline Ge under proton irradiation. Physical Review B, 2009, 80, .	3.2	39
92	Ga-implantation in Ge: Electrical activation and clustering. Journal of Applied Physics, 2009, 106, .	2.5	45
93	Formation and incorporation of SiF4 molecules in F-implanted preamorphized Si. Applied Physics Letters, 2009, 95, 101908.	3.3	10
94	High-resolution X-ray diffractionin situstudy of very small complexes: the case of hydrogenated dilute nitrides. Journal of Applied Crystallography, 2008, 41, 366-372.	4.5	22
95	Experimental investigations of boron diffusion mechanisms in crystalline and amorphous silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 240-246.	3.5	3
96	Atomistic modeling of FnVm complexes in pre-amorphized Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 207-210.	3.5	1
97	Evolution of boron-interstitial clusters in preamorphized silicon without the contribution of end-of-range defects. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 247-251.	3.5	7
98	Detailed arsenic concentration profiles at Si/SiO2 interfaces. Journal of Applied Physics, 2008, 104, 043507.	2.5	20
99	Indirect Diffusion Mechanism of Boron Atoms in Crystalline and Amorphous Silicon. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	1
100	B clustering in amorphous Si. Journal of Vacuum Science & Technology B, 2008, 26, 382.	1.3	13
101	He implantation to control B diffusion in crystalline and preamorphized Si. Journal of Vacuum Science & Technology B, 2008, 26, 386.	1.3	3
102	Mechanism of Boron Diffusion in Amorphous Silicon. Physical Review Letters, 2008, 100, 155901.	7.8	44
103	Formation and evolution of F nanobubbles in amorphous and crystalline Si. Applied Physics Letters, 2008, 93, 061906.	3.3	18
104	<i>In situ</i> thermal evolution of B–B pairs in crystalline Si: a spectroscopic high resolution x-ray diffraction study. Journal of Physics Condensed Matter, 2008, 20, 175215.	1.8	2
105	Substitutional B in Si: Accurate lattice parameter determination. Journal of Applied Physics, 2007, 101, 093523.	2.5	13
106	He induced nanovoids for point-defect engineering in B-implanted crystalline Si. Journal of Applied Physics, 2007, 101, 023515.	2.5	16
107	Fluorine counter doping effect in B-doped Si. Applied Physics Letters, 2007, 91, 132101.	3.3	15
108	Evolution of boron-interstitial clusters in crystalline Si studied by transmission electron microscopy. Applied Physics Letters, 2007, 91, 031905.	3.3	37

#	Article	IF	Citations
109	Formation and dissolution of D-N complexes in dilute nitrides. Physical Review B, 2007, 76, .	3.2	42
110	Boron Diffusion and Electrical Activation in Pre-Amorphized Si Enriched with Fluorine., 2007,,.		0
111	Effect of He Induced Nanovoid on B Implanted in Si: The Microscopic Mechanism., 2007,,.		0
112	Iso-concentration study of atomistic mechanism of B diffusion in Si. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 165-168.	1.4	0
113	He implantation in Si for B diffusion control. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 181-185.	1.4	10
114	Thermal evolution of small N-D complexes in deuterated dilute nitrides revealed byin-situhigh resolution X-ray diffraction. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2766-2771.	1.8	2
115	Evidence of a New Hydrogen Complex in Dilute Nitride Alloys. AIP Conference Proceedings, 2007, , .	0.4	0
116	Experimental evidence of B clustering in amorphous Si during ultrashallow junction formation. Applied Physics Letters, 2006, 89, 241901.	3.3	19
117	Fluorine incorporation during Si solid phase epitaxy. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 614-616.	1.4	2
118	Si-based Materials for Advanced Microelectronic Devices: Synthesis, Defects and Diffusion. Nuclear Instruments & Methods in Physics Research B, 2006, 253, vii-viii.	1.4	0
119	B diffusion and activation phenomena during post-annealing of C co-implanted ultra-shallow junctions. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 46-49.	1.4	7
120	Lattice strain of B–B pairs formed by He irradiation in crystalline Si1â^xBx/Si. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 55-58.	1.4	2
121	Point defect engineering in preamorphized silicon enriched with fluorine. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 94-99.	1.4	3
122	Carrier mobility and strain effect in heavily doped p-type Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 220-223.	3.5	6
123	Fluorine incorporation in preamorphized silicon. Journal of Vacuum Science & Technology B, 2006, 24, 433.	1.3	3
124	Size effects on the electrical activation of low-energy implanted B in Si. Journal of Vacuum Science & Technology B, 2006, 24, 468.	1.3	1
125	Room temperature migration of boron in crystalline silicon during secondary ion mass spectrometry profiling. Journal of Vacuum Science & Technology B, 2006, 24, 394.	1.3	10
126	Room Temperature Boron Diffusion in Amorphous Silicon. Materials Research Society Symposia Proceedings, 2006, 912, 1.	0.1	1

#	Article	IF	CITATIONS
127	Role of surface nanovoids on interstitial trapping in He implanted crystalline Si. Applied Physics Letters, 2006, 88, 191910.	3.3	17
128	Hydrogen-nitrogen complexes in dilute nitride alloys: Origin of the compressive lattice strain. Applied Physics Letters, 2006, 89, 061904.	3.3	38
129	Atomistic Mechanism of Boron Diffusion in Silicon. Physical Review Letters, 2006, 97, 255902.	7.8	28
130	Effect of Strain on the Carrier Mobility in Heavily Dopedp-Type Si. Physical Review Letters, 2006, 97, 136605.	7.8	13
131	Lattice strain induced by boron clusters in crystalline silicon. Semiconductor Science and Technology, 2006, 21, L41-L44.	2.0	17
132	Evidences of F-induced nanobubbles as sink for self-interstitials in Si. Applied Physics Letters, 2006, 89, 171916.	3.3	21
133	Fluorine in preamorphized Si: Point defect engineering and control of dopant diffusion. Journal of Applied Physics, 2006, 99, 103510.	2.5	31
134	Dissolution kinetics of B clusters in crystalline Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 32-38.	3.5	6
135	Dry oxidation of MBE-SiGe films: rate enhancement, Ge redistribution and defect injection. Materials Science in Semiconductor Processing, 2005, 8, 219-224.	4.0	11
136	Interaction between implanted fluorine atoms and point defects in preamorphized silicon. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 220-224.	1.4	6
137	Submicron confinement effect on electrical activation of B implanted in Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 257-260.	3.5	0
138	Effect of Self-Interstitials – Nanovoids Interaction on Two-Dimensional Diffusion and Activation of Implanted B in Si. Solid State Phenomena, 2005, 108-109, 395-400.	0.3	2
139	B activation enhancement in submicron confined implants in Si. Applied Physics Letters, 2005, 87, 133110.	3.3	7
140	Experimental evidences for two paths in the dissolution process of B clusters in crystalline Si. Applied Physics Letters, 2005, 87, 221902.	3.3	25
141	Carrier distribution in quantum nanostructures by scanning capacitance microscopy. Journal of Applied Physics, 2005, 97, 014302.	2.5	17
142	Fluorine in Si: Native-defect complexes and the suppression of impurity diffusion. Physical Review B, 2005, 72, .	3.2	53
143	Depth distribution of B implanted in Si after excimer laser irradiation. Applied Physics Letters, 2005, 86, 051909.	3.3	29
144	Fluorine segregation and incorporation during solid-phase epitaxy of Si. Applied Physics Letters, 2005, 86, 121905.	3.3	30

#	Article	IF	Citations
145	Fluorine-enhanced boron diffusion in germanium-preamorphized silicon. Journal of Applied Physics, 2005, 98, 073521.	2.5	6
146	Silicon interstitial injection during dry oxidation of SiGeâ^•Si layers. Journal of Applied Physics, 2005, 97, 036106.	2.5	19
147	Room Temperature Migration of Boron in Crystalline Silicon. Physical Review Letters, 2004, 93, 055901.	7.8	30
148	Structural characterization and modeling of damage accumulation in In implanted Si. Journal of Applied Physics, 2004, 95, 150-155.	2.5	7
149	Effect of Oxygen on the Diffusion of Nitrogen Implanted in Silicon. Electrochemical and Solid-State Letters, 2004, 7, G161.	2.2	9
150	Suppression of Boron Diffusion by Fluorine Implantation in Preamorphized Silicon. Materials Research Society Symposia Proceedings, 2004, 810, 19.	0.1	4
151	Lattice strain and composition of Boron-Interstitial Clusters in Crystalline Silicon. Materials Research Society Symposia Proceedings, 2004, 810, 328.	0.1	0
152	Self-interstitial diffusion and clustering with impurities in crystalline silicon. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 80-89.	1.4	1
153	Diffusion of ion beam injected self-interstitial defects in silicon layers grown by molecular beam epitaxy. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 286-290.	1.4	7
154	Electrical activation and lattice location of B and Ga impurities implanted in Si. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 727-731.	1.4	4
155	Boron-interstitial clusters in crystalline silicon: stoichiometry and strain. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 88-91.	3.5	2
156	Matrix effects in SIMS depth profiles of SiGe relaxed buffer layers. Applied Surface Science, 2004, 231-232, 704-707.	6.1	15
157	Role of fluorine in suppressing boron transient enhanced diffusion in preamorphized Si. Applied Physics Letters, 2004, 84, 1862-1864.	3.3	52
158	New insight on the interaction and diffusion properties of ion beam injected self-interstitials in crystalline silicon. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 922-926.	1.4	2
159	Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surface and Coatings Technology, 2003, 172, 227-232.	4.8	216
160	Carrier concentration and mobility in B doped Si1â^'xGex. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 102, 49-52.	3.5	20
161	Two-dimensional interstitial diffusion in silicon monitored by scanning capacitance microscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 102, 148-151.	3.5	4
162	Two Dimensional Interstitial Diffusion in Mesoscopic Structures. Solid State Phenomena, 2003, 95-96, 351-360.	0.3	0

#	Article	IF	CITATIONS
163	Dissolution kinetics of boron-interstitial clusters in silicon. Applied Physics Letters, 2003, 83, 680-682.	3.3	61
164	Oxidation rate enhancement of SiGe epitaxial films oxidized in dry ambient. Applied Physics Letters, 2003, 83, 3713-3715.	3.3	31
165	Suppression of Boron Transient Enhanced Diffusion by C Trapping. Solid State Phenomena, 2002, 82-84, 195-200.	0.3	1
166	Interaction between self-interstitials and substitutional C in silicon:â€fInterstitial trapping and C clustering mechanism. Physical Review B, 2002, 65, .	3.2	89
167	Direct observation of two-dimensional diffusion of the self-interstitials in crystalline Si. Physical Review B, 2002, 66, .	3.2	10
168	Modeling of Self-Interstitial Diffusion in Implanted Molecular Beam Epitaxy Silicon. Materials Research Society Symposia Proceedings, 2002, 717, 1.	0.1	5
169	Complete Suppression of the Transient Enhanced Diffusion of B Implanted in Preamorphized Si by Interstitial Trapping in a Spatially Separated C-Rich Layer. Materials Research Society Symposia Proceedings, 2002, 717, 1.	0.1	0
170	Self-Interstitials and Substitutional C in Silicon: Interstitial- Trapping and C– Clustering. Materials Research Society Symposia Proceedings, 2002, 717, 1.	0.1	1
171	Diffusion and clustering of supersaturated carbon in SiGeC layers under oxidation. Nuclear Instruments & Methods in Physics Research B, 2002, 186, 212-217.	1.4	2
172	Dopant behaviour and damage annealing in silicon implanted with $1\ \rm keV$ arsenic. Nuclear Instruments & Methods in Physics Research B, 2002, 186 , $271\text{-}275$.	1.4	5
173	Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon. Nuclear Instruments & Methods in Physics Research B, 2002, 186, 287-291.	1.4	61
174	Carbon precipitation and diffusion in SiGeC alloys under silicon self-interstitial injection. Applied Physics A: Materials Science and Processing, 2002, 75, 667-672.	2.3	1
175	Static and dynamic screening of the polarization fields in nitride nanostructures: a theoretical and experimental study. Physica B: Condensed Matter, 2002, 314, 35-38.	2.7	3
176	Thermal Stability and Substitutional Carbon Incorporation far above Solid-Solubility in Si1-xCx and Si1-x-yGexCy Layers Grown by Chemical Vapor Deposition using Disilane. Materials Research Society Symposia Proceedings, 2002, 717, 1.	0.1	4
177	Silicon Interstitial Driven Loss of Substitutional Carbon from SiGeC Structures. Materials Research Society Symposia Proceedings, 2001, 669, 1.	0.1	1
178	Carbon Diffusion and Clustering in SiGeC Layers Under Thermal Oxidation. Materials Research Society Symposia Proceedings, 2001, 669, 1.	0.1	0
179	Ultrashallow profiling of semiconductors by secondary ion mass spectrometry:. Materials Science in Semiconductor Processing, 2001, 4, 55-60.	4.0	10
180	Fabrication of ultra-shallow junctions with high electrical activation by excimer laser annealing. Materials Science in Semiconductor Processing, 2001, 4, 417-423.	4.0	13

#	Article	IF	CITATIONS
181	A TEM and SEM-cathodoluminescence study of oval defects in graded InGaAs/GaAs buffer layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 120-124.	3.5	5
182	Charge storage and screening of the internal field in GaN/AlGaN quantum wells. Journal of Crystal Growth, 2001, 230, 492-496.	1.5	11
183	Quantitative carrier profiling in ion-implanted 6H–SiC. Applied Physics Letters, 2001, 79, 1211-1213.	3.3	42
184	Complete suppression of the transient enhanced diffusion of B implanted in preamorphized Si by interstitial trapping in a spatially separated C-rich layer. Applied Physics Letters, 2001, 79, 4145-4147.	3.3	46
185	Mesoscopic-capacitor effect in GaN/Alx Ga1 \hat{a} 'x Nquantum wells: Effects on the electronic states. Physical Review B, 2001, 63, .	3.2	22
186	Electrical activation of ultralow energy As implants in Si. Journal of Applied Physics, 2001, 90, 3873-3878.	2.5	13
187	An investigation on the modeling of transient enhanced diffusion of ultralow energy implanted boron in silicon. Journal of Applied Physics, 2001, 89, 5381-5385.	2.5	23
188	Diffusion enhanced carbon loss from SiGeC layers due to oxidation. Physical Review B, 2001, 64, .	3.2	8
189	The Source of Transient Enhanced Diffusion in Sub-keV Implanted Boron in Crystalline Silicon. Materials Research Society Symposia Proceedings, 2000, 610, 521.	0.1	1
190	Clustering of ultra-low-energy implanted boron in silicon during activation annealing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 71, 219-223.	3.5	6
191	Activation annealing of ultra-low-energy implanted boron in silicon: a study combining experiment and process modeling. Materials Science in Semiconductor Processing, 2000, 3, 303-309.	4.0	1
192	Computation of the strain field generated by dislocations with a position-dependent Burgers' vector distribution. Micron, 2000, 31, 277-283.	2.2	0
193	Depth profiling of ultrashallow B implants in silicon using a magnetic-sector secondary ion mass spectrometry instrument. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 519.	1.6	9
194	Lattice curvature generation in gradedInxGa1â^'xAs/GaAsbuffer layers. Physical Review B, 2000, 62, 11054-11062.	3.2	20
195	Broad-area optical characterization of well-width homogeneity in GaN/AlxGa1â^'xN multiple quantum wells grown on sapphire wafers. Applied Physics Letters, 2000, 77, 4127-4129.	3.3	0
196	Lattice parameter of Silâ^'xâ^'y Gex Cyalloys. Physical Review B, 2000, 61, 13005-13013.	3.2	78
197	Electrical behavior of ultra-low energy implanted boron in silicon. Journal of Applied Physics, 2000, 88, 1299-1306.	2.5	42
198	Transient-enhanced diffusion of boron implanted at ultralow energies in silicon: Localization of the source. Applied Physics Letters, 2000, 76, 3058-3060.	3.3	10

#	Article	IF	Citations
199	Vacancy effects in transient diffusion of Sb induced by ion implantation of Si+ and As+ ions. Journal of Applied Physics, 2000, 87, 8461-8466.	2.5	15
200	Clustering of ultra-low-energy implanted boron in silicon during postimplantation annealing. Applied Physics Letters, 1999, 74, 3996-3998.	3.3	19
201	Zn0.85Cd0.15Se active layers on graded-composition InxGa1â^'xAs buffer layers. Journal of Applied Physics, 1999, 85, 8160-8169.	2.5	8
202	Microscopical aspects of boron diffusion in ultralow energy implanted silicon. Applied Physics Letters, 1999, 75, 1869-1871.	3.3	40
203	Atomic transport properties and electrical activation of ultra-low energy implanted boron in crystalline silicon. Materials Science in Semiconductor Processing, 1999, 2, 35-44.	4.0	27
204	Plasma processing: a novel method to reduce the transient enhanced diffusion of boron implanted in silicon. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 18-22.	1.4	4
205	Strain relaxation in graded composition InxGa1â^'xAs/GaAs buffer layers. Journal of Applied Physics, 1999, 86, 4748-4755.	2.5	89
206	Transient Diffusion Effects of Sb and B In Si Induced by Medium- and High-Energy Implants of Si+ and As+ Ions. Materials Research Society Symposia Proceedings, 1999, 568, 193.	0.1	0
207	Ultra-Low Energy Boron Implants in Crystalline Silicon: Atomic Transport Properties and Electrical Activation. Materials Research Society Symposia Proceedings, 1999, 568, 43.	0.1	1
208	Lattice-matched Zn1â^'yCdySe/InxGa1â^'xAs(0 0 1) heterostructures. Journal of Crystal Growth, 1998, 184-185, 21-25.	1.5	1
209	Native extended defects in Zn[sub 1â^'y]Cd[sub y]Se/In[sub x]Ga[sub 1â^'x]As heterostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2334.	1.6	1
210	Lattice curvature of InxGa1â^'xAs/GaAs [001] graded buffer layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3578-3581.	2.1	5
211	Role of surface and of dopant-impurity interactions on the electrical activation of B implants in crystalline Si. Applied Physics Letters, 1998, 72, 3011-3013.	3.3	19
212	Plasma processing of the silicon surface: A novel method to reduce transient enhanced diffusion of boron. Journal of Applied Physics, 1998, 84, 6628-6635.	2.5	2
213	Electrical activation of B implanted in silicon at energies below 1 keV., 0,,.		1
214	Novel aspects of the atomic transport of B implanted in silicon at energies below 1 keV., 0,,.		1