Christian Kellner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Bispecific Antibodies Increase Î ³ δT-Cell Cytotoxicity against Pancreatic Cancer Cells. Cancer Research, 2014, 74, 1349-1360.	0.9	133
2	A recombinant trispecific singleâ€chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. British Journal of Haematology, 2010, 150, 574-586.	2.5	115
3	Targeting of DEC-205 on human dendritic cells results in efficient MHC class II–restricted antigen presentation. Blood, 2010, 116, 2277-2285.	1.4	111
4	Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy. Transfusion Medicine and Hemotherapy, 2017, 44, 327-336.	1.6	87
5	Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γÎ′ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells. Frontiers in Immunology, 2018, 9, 814.	4.8	84
6	A Novel CD19-directed Recombinant Bispecific Antibody Derivative With Enhanced Immune Effector Functions for Human Leukemic Cells. Journal of Immunotherapy, 2008, 31, 871-884.	2.4	75
7	Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunology, Immunotherapy, 2008, 57, 233-246.	4.2	73
8	Effective Elimination of Acute Myeloid Leukemic Cells by Recombinant Bispecific Antibody Derivatives Directed Against CD33 and CD16. Journal of Immunotherapy, 2010, 33, 599-608.	2.4	73
9	Novel conjugates of singleâ€chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. British Journal of Haematology, 2010, 148, 879-889.	2.5	63
10	Impact of Epidermal Growth Factor Receptor (EGFR) Cell Surface Expression Levels on Effector Mechanisms of EGFR Antibodies. Journal of Immunology, 2012, 189, 5230-5239.	0.8	59
11	The novel tribody [(CD20)2xCD16] efficiently triggers effector cell-mediated lysis of malignant B cells. Leukemia, 2013, 27, 190-201.	7.2	58
12	An Anti-EGFR IgA That Displays Improved Pharmacokinetics and Myeloid Effector Cell Engagement <i>In Vivo</i> . Cancer Research, 2016, 76, 403-417.	0.9	57
13	Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods, 2014, 65, 105-113.	3.8	56
14	A single-chain triplebody with specificity for CD19 and CD33 mediates effective lysis of mixed lineage leukemia cells by dual targeting. MAbs, 2011, 3, 21-30.	5.2	54
15	$\hat{I}^{3}\hat{I}$ T cell activation by bispecific antibodies. Cellular Immunology, 2015, 296, 41-49.	3.0	54
16	Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. Journal of Immunological Methods, 2011, 373, 67-78.	1.4	47
17	Mimicking an Induced Self Phenotype by Coating Lymphomas with the NKp30 Ligand B7-H6 Promotes NK Cell Cytotoxicity. Journal of Immunology, 2012, 189, 5037-5046.	0.8	47
18	Characterization of a Mutated IgA2 Antibody of the m(1) Allotype against the Epidermal Growth Factor Receptor for the Recruitment of Monocytes and Macrophages. Journal of Biological Chemistry, 2012, 287, 25139-25150.	3.4	44

#	Article	IF	CITATIONS
19	Heterodimeric bispecific antibody-derivatives against CD19 and CD16 induce effective antibody-dependent cellular cytotoxicity against B-lymphoid tumor cells. Cancer Letters, 2011, 303, 128-139.	7.2	42
20	Daratumumab eradicates minimal residual disease in a preclinical model of pediatric T-cell acute lymphoblastic leukemia. Blood, 2019, 134, 713-716.	1.4	42
21	Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against Î ³ δT cell cytotoxicity. Oncolmmunology, 2015, 4, e988460.	4.6	41
22	The Fc-engineered CD19 antibody MOR208 (XmAb5574) induces natural killer cell-mediated lysis of acute lymphoblastic leukemia cells from pediatric and adult patients. Leukemia, 2013, 27, 1595-1598.	7.2	39
23	Monitoring Circulating γδT Cells in Cancer Patients to Optimize γδT Cell-Based Immunotherapy. Frontiers in Immunology, 2014, 5, 643.	4.8	34
24	Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study. Haematologica, 2015, 100, 541-547.	3.5	34
25	Effector mechanisms of IgA antibodies against CD20 include recruitment of myeloid cells for antibodyâ€dependent cellâ€mediated cytotoxicity and complementâ€dependent cytotoxicity. British Journal of Haematology, 2018, 181, 413-417.	2.5	33
26	An Fc-engineered CD19 antibody eradicates MRD in patient-derived MLL-rearranged acute lymphoblastic leukemia xenografts. Blood, 2017, 130, 1543-1552.	1.4	32
27	Fusion proteins between ligands for NKG2D and CD20-directed single-chain variable fragments sensitize lymphoma cells for natural killer cell-mediated lysis and enhance antibody-dependent cellular cytotoxicity. Leukemia, 2012, 26, 830-834.	7.2	31
28	Oncogenic Deregulation of Cell Adhesion Molecules in Leukemia. Cancers, 2019, 11, 311.	3.7	30
29	A CD19-specific single-chain immunotoxin mediates potent apoptosis of B-lineage leukemic cells. Leukemia, 2007, 21, 1405-1412.	7.2	28
30	HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design. MAbs, 2014, 6, 392-402.	5.2	28
31	Monitoring and functional characterization of the lymphocytic compartment in pancreatic ductal adenocarcinoma patients. Pancreatology, 2016, 16, 1069-1079.	1.1	28
32	An Fc Double-Engineered CD20 Antibody with Enhanced Ability to Trigger Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity. Transfusion Medicine and Hemotherapy, 2017, 44, 292-300.	1.6	28
33	HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity. Oncotarget, 2015, 6, 32075-32088.	1.8	28
34	Enhancing natural killer cell-mediated lysis of lymphoma cells by combining therapeutic antibodies with CD20-specific immunoligands engaging NKG2D or NKp30. OncoImmunology, 2016, 5, e1058459.	4.6	26
35	Nitric oxide is synthesized in acute leukemia cells after exposure to phenolic antioxidants and initially protects against mitochondrial membrane depolarization. Cancer Letters, 2004, 215, 43-52.	7.2	25
36	An IgG3 switch variant of rituximab mediates enhanced complementâ€dependent cytotoxicity against tumour cells with low <scp>CD</scp> 20 expression levels. British Journal of Haematology, 2013, 161, 282-286.	2.5	25

#	Article	IF	CITATIONS
37	CD20â€Specific Immunoligands Engaging NKG2D Enhance γδT Cellâ€Mediated Lysis of Lymphoma Cells. Scandinavian Journal of Immunology, 2017, 86, 196-206.	2.7	25
38	A recombinant triplebody with specificity for CD19 and HLA-DR mediates †preferential binding to antigen double-positive cells by dual-targeting. MAbs, 2012, 4, 45-56.	5.2	24
39	Combining daratumumab with CD47 blockade prolongs survival in preclinical models of pediatric T-ALL. Blood, 2022, 140, 45-57.	1.4	22
40	Enhanced ADCC Activity of Affinity Maturated and Fc-Engineered Mini-Antibodies Directed against the AML Stem Cell Antigen CD96. PLoS ONE, 2012, 7, e42426.	2.5	21
41	The novel immunotoxin HM1.24-ETA′ induces apoptosis in multiple myeloma cells. Blood Cancer Journal, 2014, 4, e219-e219.	6.2	20
42	Human kappa light chain targeted Pseudomonas exotoxin A — identifying human antibodies and Fab fragments with favorable characteristics for antibody–drug conjugate development. Journal of Immunological Methods, 2011, 371, 122-133.	1.4	19
43	Fc Engineering: Design, Expression, and Functional Characterization of Antibody Variants with Improved Effector Function. Methods in Molecular Biology, 2012, 907, 519-536.	0.9	19
44	Oncogenic KRAS Impairs EGFR Antibodies' Efficiency by C/EBPβ-Dependent Suppression of EGFR Expression. Neoplasia, 2012, 14, 190-IN7.	5.3	19
45	A single chain immunotoxin, targeting the melanoma-associated chondroitin sulfate proteoglycan, is a potent inducer of apoptosis in cultured human melanoma cells. Melanoma Research, 2008, 18, 73-84.	1.2	18
46	Effect of a tail piece cysteine deletion on biochemical and functional properties of an epidermal growth factor receptor-directed IgA2 m(1) antibody. MAbs, 2013, 5, 936-945.	5.2	16
47	Promoting natural killer cell functions by recombinant immunoligands mimicking an induced self phenotype. Oncolmmunology, 2013, 2, e24481.	4.6	15
48	Enhancing CDC and ADCC of CD19 Antibodies by Combining Fc Protein-Engineering with Fc Glyco-Engineering. Antibodies, 2020, 9, 63.	2.5	15
49	Immunotherapeutic targeting of activating natural killer cell receptors and their ligands in cancer. Clinical and Experimental Immunology, 2022, 209, 22-32.	2.6	14
50	A Complement-Optimized EGFR Antibody Improves Cytotoxic Functions of Polymorphonuclear Cells against Tumor Cells. Journal of Immunology, 2015, 195, 5077-5087.	0.8	13
51	AFM26 is a novel, highly potent BCMA/CD16A-directed bispecific antibody for high affinity NK-cell engagement in multiple myeloma Journal of Clinical Oncology, 2017, 35, 8045-8045.	1.6	12
52	Fc-engineering significantly improves the recruitment of immune effector cells by anti-ICAM-1 antibody MSH-TP15 for myeloma therapy. Haematologica, 2020, 106, haematol.2020.251371.	3.5	11
53	Enhancement of epidermal growth factor receptor antibody tumor immunotherapy by glutaminyl cyclase inhibition to interfere with CD47/signal regulatory protein alpha interactions. Cancer Science, 2021, 112, 3029-3040.	3.9	11
54	The selection of variable regions affects effector mechanisms of IgA antibodies against CD20. Blood Advances, 2021, 5, 3807-3820.	5.2	9

#	Article	IF	CITATIONS
55	A novel Fc-engineered human ICAM-1/CD54 antibody with potent anti-myeloma activity developed by cellular panning of phage display libraries. Oncotarget, 2017, 8, 77552-77566.	1.8	9
56	An Fc-Engineered CD19 Antibody Engages Macrophages and Is Effective in Xenograft Models of Pediatric Acute Lymphoblastic Leukemia. Blood, 2016, 128, 277-277.	1.4	8
57	Perspectives of Fc engineered antibodies in CD19 targeting immunotherapies in pediatric B-cell precursor acute lymphoblastic leukemia. Oncolmmunology, 2018, 7, e1448331.	4.6	7
58	Fc Glyco- and Fc Protein-Engineering: Design of Antibody Variants with Improved ADCC and CDC Activity. Methods in Molecular Biology, 2018, 1827, 381-397.	0.9	7
59	Tumor cell lysis and synergistically enhanced antibody-dependent cell-mediated cytotoxicity by NKG2D engagement with a bispecific immunoligand targeting the HER2 antigen. Biological Chemistry, 2021, .	2.5	6
60	Engineering of CD19 Antibodies: A CD19-TRAIL Fusion Construct Specifically Induces Apoptosis in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) Cells In Vivo. Journal of Clinical Medicine, 2021, 10, 2634.	2.4	5
61	Antibody-Dependent Cellular Cytotoxicity in Patients on Chronic Hemodialysis. American Journal of Nephrology, 2013, 38, 379-387.	3.1	4
62	Fc-optimized antibodies quickly pull the trigger. Blood, 2014, 124, 3180-3181.	1.4	3
63	Mouse Immune Libraries for the Generation of ScFv Fragments Directed Against Human Cell Surface Antigens. , 2010, , 47-63.		3
64	Venetoclax enhances the efficacy of therapeutic antibodies in B-cell malignancies by augmenting tumor cell phagocytosis. Blood Advances, 2022, 6, 4847-4858.	5.2	3
65	The novel multispecies Fc-specific Pseudomonas exotoxin A fusion protein α-Fc-ETA′ enables screening of antibodies for immunotoxin development. Journal of Immunological Methods, 2015, 418, 75-83.	1.4	2
66	Enhancing Cytokine-Induced Killer (CIK) cell activity with Her2-specific Fc-engineered antibodies and antibody derivatives. European Journal of Cancer, 2018, 92, S23-S24.	2.8	2
67	Targeting CD96 For Antibody Based Elimination Of Leukemic Stem Cells In AML: A New Strategy In Stem Cell Transplantation. Blood, 2013, 122, 3972-3972.	1.4	2
68	CD20 Antibodies of Human IgA Isotype Mediate CDC, and ADCC By Myeloid Effector Cells. Blood, 2016, 128, 1835-1835.	1.4	2
69	Mimicking An Induced Self Phenotype by Coating Lymphomas with the Nkp30-Ligand B7-H6 Promotes Antitumoral Natural Killer Cell Cytotoxicity. Blood, 2011, 118, 103-103.	1.4	2
70	Analyses of a Pair of Concordant Twins with Infant ALL and Discordant Clinical Outcome Reveals Immunoescape As a Mechanism of Disease Persistence in MLL-Rearranged Leukemia. Blood, 2014, 124, 3791-3791.	1.4	2
71	Effector Cell Recruitment by Bispecific Antibodies. , 2011, , 217-241.		1
72	CD96 antibody TH-111 for detection of AML leukemic stem cells, and purging of autografts for stem cell transplantation Journal of Clinical Oncology, 2014, 32, 7090-7090.	1.6	1

#	Article	IF	CITATIONS
73	Blockade of CD47-Sirpα Interactions Improved Myeloid Effector Cell Mediated Lymphoma Cell Killing By the HLA-DR Antibody Apolizumab. Blood, 2019, 134, 5305-5305.	1.4	1
74	The Novel Dual Topoisomerase Inhibitor P8-D6 Shows Anti-myeloma Activity <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2022, 21, 70-78.	4.1	1
75	Blocking the Don't Eat Me Signal (CD47-SIRPα Axis) to Improve Antibody-Based Immunotherapy of Multiple Myeloma. Blood, 2021, 138, 2684-2684.	1.4	1
76	Engineered Antibody Derivatives in Preclinical and Clinical Development. , 2013, , 251-284.		0
77	CD96 Antibody TH-111 Eradicates AML-LSC from Autografts and the Fc- Engineered Variant MSH-TH111e May be Used In Vivo. Biology of Blood and Marrow Transplantation, 2016, 22, S200.	2.0	Ο
78	Tricking the devil with an engineered protein switch for ex vivo blood cell production. Cytotherapy, 2020, 22, S33.	0.7	0
79	The CD19 Antibody MOR208 Efficiently Triggers Natural Killer Cell-Mediated Cytotoxicity Against Acute Lymphoblastic Leukemia Cells From Pediatric and Adult Patients. Blood, 2012, 120, 1502-1502.	1.4	0
80	HM1.24/CD317-directed immunotoxin to eliminate malignant plasma cells in vitro and in vivo Journal of Clinical Oncology, 2013, 31, 8604-8604.	1.6	0
81	Fc Engineering of Antibodies and Antibody Derivatives by Primary Sequence Alteration and Their Functional Characterization. Methods in Molecular Biology, 2014, 1131, 525-540.	0.9	0
82	Identification and activity of the novel antibody MSH-TP15 by a cell-based phage display screening approach Journal of Clinical Oncology, 2014, 32, e22156-e22156.	1.6	0
83	A Novel ICAM-1/CD54 Antibody Identified By Phage Display with Potent Pre-Clinical Anti-Myeloma Activity. Blood, 2014, 124, 2095-2095.	1.4	0
84	Enhancing Natural Killer Cell-Mediated Lysis of Lymphoma Cells By Combining Therapeutic Antibodies with CD20-Specific Immunoligands Engaging NKG2D or NKp30. Blood, 2014, 124, 1779-1779.	1.4	0
85	A novel human Fc-optimized ICAM-1/CD54 antibody (MSH-TP15e) with potent anti-myeloma activity in vitro and in vivo Journal of Clinical Oncology, 2015, 33, e19533-e19533.	1.6	Ο
86	Anti-myeloma activity of the novel ADCC-optimized human CD54 (ICAM-1) antibody MSH-TP15e Journal of Clinical Oncology, 2016, 34, e14009-e14009.	1.6	0
87	The Novel ADCC-Optimized Human CD54 (ICAM-1) Antibody MSH-TP15e Has Potent Anti-Myeloma Activity. Blood, 2016, 128, 4471-4471.	1.4	0
88	Targeting CD38 in T-ALL using a novel Fc-engineered antibody. , 2018, 230, .		0
89	Venetoclax Enhances the Efficacy of Therapeutic Antibodies in B-Cell Malignancies. Blood, 2018, 132, 4177-4177.	1.4	0
90	Potent targeting of B cell lymphoma and plasma cell tumors by a tetravalent, Fc-engineered antibody directed against the glycoantigen CD75s Journal of Clinical Oncology, 2019, 37, e14004-e14004.	1.6	0

#	Article	IF	CITATIONS
91	Venetoclax enhances the efficacy of therapeutic antibodies in B-cell malignancies. Klinische Padiatrie, 2019, 231, .	0.6	0
92	Immunotherapeutic co-targeting of CD38 and CD47 in T-cell acute lymphoblastic leukemia (T-ALL). , 2020, 232, .		0
93	Co-Targeting of CD38 and CD47 in T Cell Acute Lymphoblastic Leukemia. Blood, 2020, 136, 39-40.	1.4	0