Chun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622475/publications.pdf

Version: 2024-02-01

335 papers 14,044 citations

28274 55 h-index 26613 107 g-index

347 all docs

347 docs citations

347 times ranked

10679 citing authors

#	Article	IF	Citations
1	Enhanced thermal conductivity of TiO2â€"water based nanofluids. International Journal of Thermal Sciences, 2005, 44, 367-373.	4.9	1,164
2	Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 2008, 47, 560-568.	4.9	914
3	A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 2009, 106, .	2.5	897
4	Thermophysical and electrokinetic properties of nanofluids – A critical review. Applied Thermal Engineering, 2008, 28, 2109-2125.	6.0	553
5	A model for the thermal conductivity of nanofluids – the effect of interfacial layer. Journal of Nanoparticle Research, 2006, 8, 245-254.	1.9	324
6	Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9466-9471.	7.1	302
7	Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. International Journal of Heat and Mass Transfer, 1998, 41, 4229-4249.	4.8	280
8	Analysis of electroosmotic flow of power-law fluids in a slit microchannel. Journal of Colloid and Interface Science, 2008, 326, 503-510.	9.4	254
9	Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method. Journal of Colloid and Interface Science, 2001, 243, 128-135.	9.4	245
10	Progressive Pulmonary Fibrosis Is Caused by Elevated Mechanical Tension on Alveolar Stem Cells. Cell, 2020, 180, 107-121.e17.	28.9	233
11	A combined model for the effective thermal conductivity of nanofluids. Applied Thermal Engineering, 2009, 29, 2477-2483.	6.0	203
12	Perspectives for low-temperature waste heat recovery. Energy, 2019, 176, 1037-1043.	8.8	189
13	MAPK-Mediated YAP Activation Controls Mechanical-Tension-Induced Pulmonary Alveolar Regeneration. Cell Reports, 2016, 16, 1810-1819.	6.4	178
14	Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 339-353.	4.7	171
15	Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. International Journal of Heat and Mass Transfer, 2004, 47, 215-227.	4.8	170
16	Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 2002, 40, 2203-2221.	5.0	163
17	Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials. Journal of Colloid and Interface Science, 2002, 253, 285-294.	9.4	155
18	Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Scientific Reports, 2016, 6, 20395.	3.3	155

#	Article	IF	Citations
19	Engineering microfluidic concentration gradient generators for biological applications. Microfluidics and Nanofluidics, 2014, 16, 1-18.	2.2	152
20	DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab on A Chip, 2009, 9, 802-809.	6.0	141
21	Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module. International Journal of Heat and Mass Transfer, 2019, 133, 827-841.	4.8	137
22	Electrokinetics of non-Newtonian fluids: A review. Advances in Colloid and Interface Science, 2013, 201-202, 94-108.	14.7	131
23	Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels. Journal of Colloid and Interface Science, 1997, 194, 95-107.	9.4	124
24	Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis. Analytical Chemistry, 2011, 83, 9579-9585.	6.5	115
25	Advances in electrokinetics and their applications in micro/nano fluidics. Microfluidics and Nanofluidics, 2012, 13, 179-203.	2.2	115
26	On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab on A Chip, 2009, 9, 1504.	6.0	108
27	Two-fluid electroosmotic flow in microchannels. Journal of Colloid and Interface Science, 2005, 284, 306-314.	9.4	103
28	Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3â€D conducting PDMS composite electrodes. Electrophoresis, 2010, 31, 2622-2631.	2.4	103
29	Freezing of sessile water droplet for various contact angles. International Journal of Thermal Sciences, 2016, 101, 59-67.	4.9	97
30	Convective heat transfer of nanofluids in a concentric annulus. International Journal of Thermal Sciences, 2013, 71, 249-257.	4.9	96
31	Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Applied Mathematics and Computation, 2009, 211, 502-509.	2.2	95
32	Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis, 2006, 27, 628-639.	2.4	88
33	An exact solution for electroosmosis of non-Newtonian fluids in microchannels. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1076-1079.	2.4	88
34	On the Anomalous Convective Heat Transfer Enhancement in Nanofluids: A Theoretical Answer to the Nanofluids Controversy. Journal of Heat Transfer, 2013, 135, .	2.1	88
35	Sample concentration in a microfluidic paper-based analytical device using ion concentration polarization. Sensors and Actuators B: Chemical, 2016, 222, 735-740.	7.8	84
36	Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics, 2008, 2, 34105.	2.4	83

#	Article	IF	Citations
37	Pairing of integrins with ECM proteins determines migrasome formation. Cell Research, 2017, 27, 1397-1400.	12.0	83
38	Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique. Journal Physics D: Applied Physics, 2006, 39, 5316-5322.	2.8	81
39	Solidification of fluid saturated in open-cell metallic foams with graded morphologies. International Journal of Heat and Mass Transfer, 2016, 98, 60-69.	4.8	80
40	Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels. Analytica Chimica Acta, 2004, 507, 27-37.	5.4	79
41	Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluidics and Nanofluidics, 2009, 6, 847-852.	2.2	77
42	Nonlinear Smoluchowski velocity for electroosmosis of Power″aw fluids over a surface with arbitrary zeta potentials. Electrophoresis, 2010, 31, 973-979.	2.4	74
43	Transient Analysis of Electroosmotic Flow in a Slit Microchannel. Journal of Colloid and Interface Science, 2002, 248, 524-527.	9.4	73
44	Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics, 2010, 4, 014101.	2.4	73
45	Numerical analysis and experimental visualization of phase change material melting process for thermal management of cylindrical power battery. Applied Thermal Engineering, 2018, 128, 489-499.	6.0	70
46	Capillary Filling in Closed End Nanochannels. Langmuir, 2010, 26, 13251-13255.	3.5	69
47	Characterization of a zeolite-templated carbon for H2 storage application. Microporous and Mesoporous Materials, 2009, 118, 503-507.	4.4	68
48	Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage. Applied Energy, 2018, 229, 700-714.	10.1	67
49	Mixing enhancement for high viscous fluids in a microfluidic chamber. Lab on A Chip, 2011, 11, 2081.	6.0	65
50	Determination of the diffusivity of point defects in passive films on carbon steel. Thin Solid Films, 2002, 416, 169-173.	1.8	64
51	Electro-osmotic mobility of non-Newtonian fluids. Biomicrofluidics, 2011, 5, 14110.	2.4	62
52	Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number. Microfluidics and Nanofluidics, 2006, 3, 101-108.	2.2	59
53	On-demand droplet release for droplet-based microfluidic system. Lab on A Chip, 2010, 10, 559.	6.0	59
54	Retarded condensate freezing propagation on superhydrophobic surfaces patterned with micropillars. Applied Physics Letters, 2016, 108, .	3.3	59

#	Article	IF	Citations
55	Transient two-liquid electroosmotic flow with electric charges at the interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266, 117-128.	4.7	57
56	Modeling of Electroosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect:Â The Nernstâ^Planck Equation versus the Boltzmann Distribution. Langmuir, 2003, 19, 10975-10984.	3.5	55
57	Electroosmotic flows of nonâ€ <scp>N</scp> ewtonian powerâ€law fluids in a cylindrical microchannel. Electrophoresis, 2013, 34, 662-667.	2.4	55
58	Cells Sensing Mechanical Cues: Stiffness Influences the Lifetime of Cell–Extracellular Matrix Interactions by Affecting the Loading Rate. ACS Nano, 2016, 10, 207-217.	14.6	54
59	Dynamic Cell Fractionation and Transportation Using Moving Dielectrophoresis. Analytical Chemistry, 2007, 79, 6975-6987.	6.5	52
60	Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field. Microfluidics and Nanofluidics, 2012, 12, 723-733.	2.2	52
61	Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Journal of Colloid and Interface Science, 2004, 275, 679-698.	9.4	51
62	Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches. International Journal of Heat and Mass Transfer, 2017, 108, 1048-1056.	4.8	51
63	Valveless micropump with acoustically featured pumping chamber. Microfluidics and Nanofluidics, 2010, 8, 549-555.	2.2	50
64	Saturated pool boiling from carbon nanotube coated surfaces at different orientations. International Journal of Heat and Mass Transfer, 2014, 79, 893-904.	4.8	48
65	Developing pressure-driven liquid flow in microchannels under the electrokinetic effect. International Journal of Engineering Science, 2004, 42, 609-622.	5.0	47
66	Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model. Journal of Colloid and Interface Science, 2007, 311, 609-618.	9.4	45
67	Enhancement of electrokinetically driven microfluidic Tâ€mixer using frequency modulated electric field and channel geometry effects. Electrophoresis, 2009, 30, 3144-3152.	2.4	45
68	Effect of finite reservoir size on electroosmotic flow in microchannels. Microfluidics and Nanofluidics, 2007, 3, 333-340.	2.2	43
69	Collective effects on thermophoresis of colloids: a microfluidic study within the framework of DLVO theory. Soft Matter, 2013, 9, 7726.	2.7	43
70	Reduced contact time of a droplet impacting on a moving superhydrophobic surface. Applied Physics Letters, 2020, 117, .	3.3	43
71	Surface-tension-driven liquid–liquid displacement in a capillary. Journal of Micromechanics and Microengineering, 2005, 15, 1722-1728.	2.6	42
72	Electro-osmotic control of the interface position of two-liquid flow through a microchannel. Journal of Micromechanics and Microengineering, 2007, 17, 358-366.	2.6	42

#	Article	lF	CITATIONS
73	Microfluidic Techniques for Analytes Concentration. Micromachines, 2017, 8, 28.	2.9	42
74	Kinetics of Particle Transport to a Solid Surface from an Impinging Jet under Surface and External Force Fields. Journal of Colloid and Interface Science, 1998, 208, 226-240.	9.4	41
75	Electrical double layer potential distribution in a rectangular microchannel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 135, 109-116.	4.7	41
76	Dynamic aspects of electroosmotic flow in rectangular microchannels. International Journal of Engineering Science, 2004, 42, 1459-1481.	5.0	41
77	A MODEL FOR PREDICTING THE EFFECTIVE THERMAL CONDUCTIVITY OF NANOPARTICLE-FLUID SUSPENSIONS. International Journal of Nanoscience, 2006, 05, 23-33.	0.7	41
78	Characterization of electroosmotic flow in rectangular microchannels. International Journal of Heat and Mass Transfer, 2007, 50, 3115-3121.	4.8	41
79	Design of Variable-Speed Dish-Stirling Solar–Thermal Power Plant for Maximum Energy Harness. IEEE Transactions on Energy Conversion, 2015, 30, 394-403.	5.2	41
80	Joule heating and its effects on electrokinetic transport of solutes in rectangular microchannels. Sensors and Actuators A: Physical, 2007, 139, 221-232.	4.1	40
81	Cell Motion Model for Moving Dielectrophoresis. Analytical Chemistry, 2008, 80, 5454-5461.	6.5	40
82	Interface control of pressure-driven two-fluid flow in microchannels using electroosmosis. Journal of Micromechanics and Microengineering, 2005, 15, 2289-2297.	2.6	39
83	Inertial particle focusing dynamics in a trapezoidal straight microchannel: application to particle filtration. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	39
84	Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. Journal of Chemical Physics, 2006, 124, 021103.	3.0	38
85	Analysis of electrokinetic transport of a spherical particle in a microchannel. Electrophoresis, 2007, 28, 658-664.	2.4	37
86	CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF AQUEOUS TiO ₂ NANOFLUID UNDER LAMINAR FLOW CONDITIONS. International Journal of Nanoscience, 2008, 07, 325-331.	0.7	37
87	Analysis of capillary filling in nanochannels with electroviscous effects. Microfluidics and Nanofluidics, 2009, 7, 519-530.	2.2	37
88	AC field inducedâ€charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis, 2011, 32, 629-637.	2.4	36
89	How different freezing morphologies of impacting droplets form. Journal of Colloid and Interface Science, 2021, 584, 403-410.	9.4	36
90	Induced charge effects on electrokinetic entry flow. Physics of Fluids, 2017, 29, .	4.0	35

#	Article	IF	Citations
91	On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging. Scientific Reports, 2018, 8, 6401.	3.3	35
92	Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel flow. Journal of Colloid and Interface Science, 2005, 291, 28-36.	9.4	34
93	Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. Journal of Electrostatics, 2008, 66, 514-525.	1.9	34
94	AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. Biomicrofluidics, 2012, 6, 12807-128079.	2.4	34
95	Three dimensional features of convective heat transfer in droplet-based microchannel heat sinks. International Journal of Heat and Mass Transfer, 2015, 86, 455-464.	4.8	34
96	Frost spreading on microscale wettability/morphology patterned surfaces. Applied Thermal Engineering, 2017, 121, 136-145.	6.0	34
97	A method for simultaneously determining the zeta potentials of the channel surface and the tracer particles using microparticle image velocimetry technique. Electrophoresis, 2006, 27, 620-627.	2.4	33
98	Investigation of H2 storage in a templated carbon derived from zeolite Y and PFA. Separation and Purification Technology, 2009, 66, 565-569.	7.9	33
99	Current commercial dPCR platforms: technology and market review. Critical Reviews in Biotechnology, 2023, 43, 433-464.	9.0	33
100	Joule heating induced heat transfer for electroosmotic flow of power-law fluids in a microcapillary. International Journal of Heat and Mass Transfer, 2012, 55, 2044-2051.	4.8	32
101	Dish-Stirling Solar Power Plants: Modeling, Analysis, and Control of Receiver Temperature. IEEE Transactions on Sustainable Energy, 2014, 5, 398-407.	8.8	32
102	A human thermal balance based evaluation of thermal comfort subject to radiant cooling system and sedentary status. Applied Thermal Engineering, 2017, 122, 461-472.	6.0	32
103	Numerical simulation of two-fluid electroosmotic flow in microchannels. International Journal of Heat and Mass Transfer, 2005, 48, 5103-5111.	4.8	31
104	Depthwise averaging approach to cross-stream mixing in a pressure-driven microchannel flow. Microfluidics and Nanofluidics, 2005, 1, 218-226.	2,2	31
105	Integrin activation and internalization mediated by extracellular matrix elasticity: A biomechanical model. Journal of Biomechanics, 2014, 47, 1479-1484.	2.1	31
106	Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating. International Journal of Heat and Mass Transfer, 2010, 53, 2722-2731.	4.8	30
107	Efficient Onâ€Demand Compound Droplet Formation: From Microfluidics to Microdroplets as Miniaturized Laboratories. Small, 2009, 5, 1149-1152.	10.0	29
108	Dynamic contact angle of water-based titanium oxide nanofluid. Nanoscale Research Letters, 2013, 8, 282.	5.7	29

#	Article	IF	CITATIONS
109	Electrokinetic pumping using packed microcapillary. Sensors and Actuators A: Physical, 2007, 133, 375-382.	4.1	28
110	Evaporation of a sessile droplet on flat surfaces: An axisymmetric lattice Boltzmann model with consideration of contact angle hysteresis. International Journal of Heat and Mass Transfer, 2021, 178, 121577.	4.8	28
111	Interfacial Tension Measurement With an Optofluidic Sensor. IEEE Sensors Journal, 2007, 7, 692-697.	4.7	27
112	Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating. Lab on A Chip, 2011, 11, 1396.	6.0	27
113	Axisymmetric lattice Boltzmann model for simulating the freezing process of a sessile water droplet with volume change. Physical Review E, 2020, 101, 023314.	2.1	27
114	Methane storage in carbon pellets prepared via a binderless method. Energy Conversion and Management, 2011, 52, 1258-1262.	9.2	26
115	Absolute instability induced by Marangoni effect in thin liquid film flows on vertical cylindrical surfaces. Chemical Engineering Science, 2018, 177, 261-269.	3.8	26
116	Inertial-Based Filtration Method for Removal of Microcarriers from Mesenchymal Stem Cell Suspensions. Scientific Reports, 2018, 8, 12481.	3.3	26
117	Rapid preâ€concentration of <i>Escherichia coli</i> in a microfluidic paperâ€based device using ion concentration polarization. Electrophoresis, 2020, 41, 867-874.	2.4	26
118	Numerical simulations of the liquid-vapor phase change dynamic processes in a flat micro heat pipe. International Journal of Heat and Mass Transfer, 2020, 147, 119022.	4.8	26
119	Influences of substrate wettability and liquid viscosity on isothermal spreading of liquid droplets on solid surfaces. Experiments in Fluids, 2002, 33, 728-731.	2.4	25
120	Vortex generation and control in a microfluidic chamber with actuations. Physics of Fluids, 2016, 28, .	4.0	25
121	A method of determining the thickness of liquid-liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 51-59.	4.7	24
122	Molecular dynamics study on the liquid–vapor interfacial profiles. Fluid Phase Equilibria, 2001, 183-184, 321-329.	2.5	24
123	Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under electrokinetic wall effect. International Journal of Engineering Science, 2004, 42, 2011-2027.	5.0	24
124	Developing electro-osmotic flow in closed-end micro-channels. International Journal of Engineering Science, 2005, 43, 1349-1362.	5.0	24
125	Numerical modeling of Joule heatingâ€induced temperature gradient focusing in microfluidic channels. Electrophoresis, 2008, 29, 1006-1012.	2.4	24
126	Freezing morphologies of impact water droplets on an inclined subcooled surface. International Journal of Heat and Mass Transfer, 2021, 181, 121843.	4.8	24

#	Article	IF	CITATIONS
127	Diagnosis of transient electrokinetic flow in microfluidic channels. Physics of Fluids, 2007, 19, 017114.	4.0	23
128	Analysis of induced-charge electro-osmotic flow in a microchannel embedded with polarizable dielectric blocks. Physical Review E, 2009, 80, 046312.	2.1	23
129	Viscoâ€elastic traffic flow model. Journal of Advanced Transportation, 2013, 47, 635-649.	1.7	23
130	Dynamic Electroosmotic Flows of Power-Law Fluids in Rectangular Microchannels. Micromachines, 2017, 8, 34.	2.9	23
131	Breakup of ultra-thin liquid films on vertical fiber enhanced by Marangoni effect. Chemical Engineering Science, 2019, 199, 342-348.	3 . 8	23
132	Frequency-dependent velocity and vorticity fields of electro-osmotic flow in a closed-end cylindrical microchannel. Journal of Micromechanics and Microengineering, 2005, 15, 301-312.	2.6	22
133	Droplet microfluidic preparation of au nanoparticles-coated chitosan microbeads for flow-through surface-enhanced Raman scattering detection. Microfluidics and Nanofluidics, 2010, 9, 1175-1183.	2.2	22
134	Promote anti- /de- frosting by suppressing directional ice bridging. International Journal of Heat and Mass Transfer, 2021, 165, 120609.	4.8	22
135	Electroosmotic flow in irregular shape microchannels. International Journal of Engineering Science, 2005, 43, 1450-1463.	5.0	21
136	Capillary filling with the effect of pneumatic pressure of trapped air. Microfluidics and Nanofluidics, 2010, 9, 65-75.	2.2	21
137	A method of producing electrokinetic power through forward osmosis. Applied Physics Letters, 2012, 101, .	3.3	21
138	Energy Conversion from Salinity Gradients by Forward Osmosis–Electrokinetics. Journal of Physical Chemistry C, 2014, 118, 10574-10583.	3.1	21
139	Thermophoresis of charged colloidal particles in aqueous media – Effect of particle size. International Journal of Heat and Mass Transfer, 2016, 101, 1283-1291.	4.8	21
140	Effects of stress fiber contractility on uniaxial stretch guiding mitosis orientation and stress fiber alignment. Journal of Biomechanics, 2011, 44, 2388-2394.	2.1	20
141	Effects of Hypergravity on Osteopontin Expression in Osteoblasts. PLoS ONE, 2015, 10, e0128846.	2.5	20
142	Numerical simulation of Joule heating effect on sample band transport in capillary electrophoresis. Analytica Chimica Acta, 2006, 561, 138-149.	5.4	19
143	Translational thermophoresis and rotational movement of peanut-like colloids under temperature gradient. Microfluidics and Nanofluidics, 2015, 19, 805-811.	2.2	19
144	Numerical Computation of Hydrodynamically and Thermally Developing Liquid Flow in Microchannels With Electrokinetics Effects. Journal of Heat Transfer, 2004, 126, 70-75.	2.1	18

#	Article	IF	CITATIONS
145	Joule Heating Induced Transient Temperature Field and Its Effects on Electroosmosis in a Microcapillary Packed with Microspheres. Langmuir, 2005, 21, 7598-7607.	3.5	18
146	Lattice Boltzmann-based single-phase method for free surface tracking of droplet motions. International Journal for Numerical Methods in Fluids, 2007, 53, 333-351.	1.6	18
147	Superhydrophobic carbon nanotube/polydimethylsiloxane composite coatings. Materials Science and Technology, 2015, 31, 1745-1748.	1.6	18
148	AC electroosmosis in microchannels packed with a porous medium. Journal of Micromechanics and Microengineering, 2004, 14, 1249-1257.	2.6	17
149	Characterization of surface tension and contact angle of nanofluids. Proceedings of SPIE, 2009, , .	0.8	17
150	Capillary Filling in Nanochannels—Modeling, Fabrication, and Experiments. Heat Transfer Engineering, 2011, 32, 624-635.	1.9	17
151	On the competition between streaming potential effect and hydrodynamic slip effect in pressure-driven microchannel flows. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386, 191-194.	4.7	17
152	ac electrokinetic phenomena over semiconductive surfaces: Effective electric boundary conditions and their applications. Physical Review E, 2011, 83, 066304.	2.1	17
153	Electroâ€osmotic flows in a microchannel with patterned hydrodynamic slip walls. Electrophoresis, 2012, 33, 899-905.	2.4	17
154	A multi-point laser Doppler vibrometer with fiber-based configuration. Review of Scientific Instruments, 2013, 84, 121702.	1.3	17
155	Enhancement of electrophoretic mobility of microparticles near a solid wallâ€"Experimental verification. Electrophoresis, 2015, 36, 731-736.	2.4	17
156	Deposition of colloidal particles in a microchannel at elevated temperatures. Microfluidics and Nanofluidics, 2015, 18, 403-414.	2.2	17
157	Membrane-based indirect power generation technologies for harvesting salinity gradient energy - A review. Desalination, 2022, 525, 115485.	8.2	17
158	Kinetics of microbubble–solid surface interaction and attachment. AICHE Journal, 2003, 49, 1024-1037.	3.6	16
159	Joule heating and its effects on electroosmotic flow in microfluidic channels. Journal of Physics: Conference Series, 2006, 34, 925-930.	0.4	16
160	Microfluidic Bubble Generation by Acoustic Field for Mixing Enhancement. Journal of Heat Transfer, 2012, 134, .	2.1	16
161	Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel. Analytica Chimica Acta, 2015, 858, 91-97.	5.4	16
162	A multiâ€module microfluidic platform for continuous preâ€concentration of waterâ€soluble ions and separation of oil droplets from oilâ€inâ€water (O/W) emulsions using a DCâ€biased AC electrokinetic technique. Electrophoresis, 2017, 38, 645-652.	2.4	16

#	Article	IF	Citations
163	Wetting transition of sessile and condensate droplets on copper-based superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2018, 127, 280-288.	4.8	16
164	Freezing characteristics of deposited water droplets on hydrophilic and hydrophobic cold surfaces. International Journal of Thermal Sciences, 2022, 171, 107241.	4.9	16
165	Rapid solidification of highly undercooled Ni–Cu alloys. Materials Science & Dience & Dien	5.6	15
166	Analysis of electroosmotic flow in a microchannel packed with microspheres. Microfluidics and Nanofluidics, 2005, 1, 168-176.	2.2	15
167	Microfluidic sensor for dynamic surface tension measurement. IET Nanobiotechnology, 2006, 153, 102.	2.1	15
168	Contact line mobility in liquid droplet spreading on rough surface. Journal of Colloid and Interface Science, 2008, 323, 126-132.	9.4	15
169	Colloidal particle deposition from electrokinetic flow in a microfluidic channel. Electrophoresis, 2009, 30, 732-741.	2.4	15
170	A study of capillary flow from a pendant droplet. Microfluidics and Nanofluidics, 2009, 7, 697-707.	2.2	15
171	Epimorphin Regulates Bile Duct Formation via Effects on Mitosis Orientation in Rat Liver Epithelial Stem-Like Cells. PLoS ONE, 2010, 5, e9732.	2.5	15
172	Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics. Soft Matter, 2018, 14, 1056-1066.	2.7	15
173	An Electroporation Device with Microbead-Enhanced Electric Field for Bacterial Inactivation. Inventions, 2020, 5, 2.	2.5	15
174	Freezing process of ferrofluid droplets: Numerical and scaling analyses. Physical Review Fluids, 2020, 5, .	2.5	15
175	Analysis of Fine Bubble Attachment onto a Solid Surface within the Framework of Classical DLVO Theory. Journal of Colloid and Interface Science, 1999, 219, 69-80.	9.4	14
176	A Monte Carlo simulation on surface tension of liquid nickel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 292, 203-206.	5.6	14
177	A Visualizing Method for Study of Micron Bubble Attachment onto a Solid Surface under Varying Physicochemical Conditions. Industrial & Engineering Chemistry Research, 2000, 39, 4949-4955.	3.7	14
178	Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified Hâ€filter. Electrophoresis, 2014, 35, 714-720.	2.4	14
179	Continuous flow microfluidic cell inactivation with the use of insulating micropillars for multiple electroporation zones. Electrophoresis, 2019, 40, 2522-2529.	2.4	14
180	Chemical screening identifies ROCK1 as a regulator of migrasome formation. Cell Discovery, 2020, 6, 51.	6.7	14

#	Article	IF	CITATIONS
181	Freezing of a nanofluid droplet: From a pointy tip to flat plateau. Applied Physics Letters, 2021, 118, .	3.3	14
182	Static Stretch Induces Active Morphological Remodeling and Functional Impairment of Alveolar Epithelial Cells. Respiration, 2009, 78, 301-311.	2.6	13
183	Mixing enhancement by the vortex in a microfluidic mixer with actuation. Experimental Thermal and Fluid Science, 2015, 67, 57-61.	2.7	13
184	Hypergravity-induced enrichment of \hat{l}^21 integrin on the cell membranes of osteoblast-like cells via caveolae-dependent endocytosis. Biochemical and Biophysical Research Communications, 2015, 463, 928-933.	2.1	13
185	Rapid prototyping of single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions by using laser ablation and UV-curable polymer. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	13
186	Numerical Investigation on the Relationship between Human Thermal Comfort and Thermal Balance under Radiant Cooling System. Energy Procedia, 2017, 105, 2879-2884.	1.8	13
187	Scaledâ€Up Inertial Microfluidics: Retention System for Microcarrierâ€Based Suspension Cultures. Biotechnology Journal, 2019, 14, e1800674.	3.5	13
188	Thermal comfort analysis of radiant cooling panels with dedicated fresh-air system. Indoor and Built Environment, 2021, 30, 1596-1608.	2.8	13
189	Dielectrophoresis Field-Flow Fractionation for Continuous-Flow Separation of Particles and Cells in Microfluidic Devices. Advances in Transport Phenomena, 2014, , 29-62.	0.5	13
190	Analysis of Power-Law Fluid Flow in a Microchannel with Electrokinetic Effects. International Journal of Emerging Multidisciplinary Fluid Sciences, 2009, 1, 37-52.	0.5	13
191	Self-peeling of frozen water droplets upon impacting a cold surface. Communications Physics, 2022, 5,	5.3	13
192	A lattice Boltzmann based single-phase method for modeling surface tension and wetting. Computational Materials Science, 2007, 39, 282-290.	3.0	12
193	Cyclic deformation-induced injury and differentiation of rat alveolar epithelial type II cells. Respiratory Physiology and Neurobiology, 2012, 180, 237-246.	1.6	12
194	Continuous Droplet-Based Liquid-Liquid Extraction of Phenol from Oil. Separation Science and Technology, 2015, 50, 1023-1029.	2.5	12
195	Induced-charge electrokinetics in a conducting nanochannel with broken geometric symmetry: Towards a flexible control of ionic transport. Physics of Fluids, 2015, 27, .	4.0	12
196	Dielectrophoretic trapping and impedance detection of <i>Escherichia coli</i> , <i>Vibrio cholera</i> , and <i>Enterococci</i> bacteria. Biomicrofluidics, 2020, 14, 054105.	2.4	12
197	Active control of the freezing process of a ferrofluid droplet with magnetic fields. Applied Thermal Engineering, 2020, 176, 115444.	6.0	12
198	Pore scale investigations on melting of phase change materials considering the interfacial thermal resistance. International Communications in Heat and Mass Transfer, 2020, 115, 104631.	5.6	12

#	Article	IF	CITATIONS
199	Dynamic aspects of electroosmotic flow. Microfluidics and Nanofluidics, 2006, 2, 205-214.	2.2	11
200	Kinetics of Colloidal Particle Deposition toÂaÂSolid Surface from Pressure Driven Microchannel Flows. Canadian Journal of Chemical Engineering, 2007, 85, 609-616.	1.7	11
201	Fabrication of nanoporous junctions using off-the-shelf Nafion membrane. Journal of Micromechanics and Microengineering, 2015, 25, 115019.	2.6	11
202	Experimental study on thermophoresis of colloids in aqueous surfactant solutions. Journal of Physics Condensed Matter, 2015, 27, 495102.	1.8	11
203	Microfluidic concentration of sample solutes using Joule heating effects under a combined AC and DC electric field. International Journal of Heat and Mass Transfer, 2015, 85, 158-165.	4.8	11
204	Triple condensate halo from a single water droplet impacting upon a cold surface. Applied Physics Letters, 2019, 114, 183703.	3.3	11
205	Enhanced sample pre-concentration by ion concentration polarization on a paraffin coated converging microfluidic paper based analytical platform. Biomicrofluidics, 2020, 14, 014103.	2.4	11
206	Surface Tension of Ni-Cu Alloys: A Molecular Simulation Approach. International Journal of Thermophysics, 2001, 22, 1295-1302.	2.1	10
207	Fabrication and Experimental Characterization of Nanochannels. Journal of Heat Transfer, 2012, 134, .	2.1	10
208	New Flutter-Suppression Method for a Missile Fin with an Actuator. Journal of Aircraft, 2013, 50, 989-994.	2.4	10
209	Integrin endocytosis on elastic substrates mediates mechanosensing. Journal of Biomechanics, 2016, 49, 2644-2654.	2.1	10
210	Lab-on-chip microfluidic impedance measurement for laminar flow ratio sensing and differential conductivity difference detection. Applied Physics Letters, 2017, 110, .	3.3	10
211	An immersed boundary-lattice Boltzmann model for simulation of deposited particle patterns in an evaporating sessile droplet with dispersed particles. International Journal of Heat and Mass Transfer, 2021, 181, 121905.	4.8	10
212	Fibrinogen improves liver function via promoting cell aggregation and fibronectin assembly in hepatic spheroids. Biomaterials, 2022, 280, 121266.	11.4	10
213	Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly. International Journal of Biological Sciences, 2011, 7, 588-599.	6.4	9
214	Thermal Effect on Microchannel Electro-osmotic Flow With Consideration of Thermodiffusion. Journal of Heat Transfer, 2015, 137, .	2.1	9
215	Binding of integrin $\hat{l}\pm 1$ to bone morphogenetic protein receptor IA suggests a novel role of integrin $\hat{l}\pm 1\hat{l}^21$ in bone morphogenetic protein 2 signalling. Journal of Biomechanics, 2015, 48, 3950-3954.	2.1	9
216	Combinational concentration gradient confinement through stagnation flow. Lab on A Chip, 2016, 16, 368-376.	6.0	9

#	Article	IF	CITATIONS
217	Enhanced cell trapping throughput using DCâ€biased AC electric field in a dielectrophoresisâ€based fluidic device with densely packed silica beads. Electrophoresis, 2018, 39, 878-886.	2.4	9
218	Numerical analysis of thermal conductivity effect on thermophoresis of a charged colloidal particle in aqueous media. International Journal of Heat and Mass Transfer, 2019, 142, 118421.	4.8	9
219	Impact of ITS measures on public transport: A Case study. Journal of Advanced Transportation, 2001, 35, 305-320.	1.7	8
220	Thermal Conductivity of Nanoparticle Suspensions (Nanofluids). , 0, , .		8
221	lon transport and selection through DCGC-based electroosmosis in a conducting nanofluidic channel. Microfluidics and Nanofluidics, 2015, 18, 785-794.	2.2	8
222	Continuous detection of trace level concentration of oil droplets in water using microfluidic AC electroosmosis (ACEO). RSC Advances, 2015, 5, 70197-70203.	3.6	8
223	Continuous hypergravity alters the cytoplasmic elasticity of MC3T3-E1 osteoblasts via actin filaments. Journal of Biomechanics, 2018, 72, 222-227.	2.1	8
224	Thermocapillary effect on the dynamics of liquid films coating the interior surface of a tube. International Journal of Heat and Mass Transfer, 2019, 138, 524-533.	4.8	8
225	Combined Anomaly Detection Framework for Digital Twins of Water Treatment Facilities. Water (Switzerland), 2022, 14, 1001.	2.7	8
226	Investigation of active interface control of pressure driven two-fluid flow in microchannels. Sensors and Actuators A: Physical, 2007, 133, 323-328.	4.1	7
227	Fabrication of 3-D Curved Microstructures by Constrained Gas Expansion and Photopolymerization. Langmuir, 2008, 24, 5492-5499.	3.5	7
228	Effects of von Willebrand factor concentration and platelet collision on shear-induced platelet activation. Thrombosis and Haemostasis, 2008, 100, 60-68.	3.4	7
229	Bubble dynamics in a microfluidic chamber under low-frequency actuation. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	7
230	Confined wetting of water on CNT web patterned surfaces. Applied Physics Letters, 2017, 111, .	3.3	7
231	A gradient theory approach to line tension of liquid–liquid–fluid systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 144, 275-285.	4.7	6
232	Molecular Dynamics Simulation on Interface Characteristics of Micro Droplets. Chinese Physics Letters, 1999, 16, 803-804.	3.3	6
233	On Electrokinetic Mass Transport in a Microchannel With Joule Heating Effects. Journal of Heat Transfer, 2005, 127, 660-663.	2.1	6
234	Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects. Journal of Physics: Conference Series, 2006, 34, 385-392.	0.4	6

#	Article	IF	CITATIONS
235	A dual-scale model for the caveolin-mediated vesiculation. Soft Matter, 2013, 9, 7981.	2.7	6
236	Substrate stiffness of endothelial cells directs LFA-1/ICAM-1 interaction: A physical trigger of immune-related diseases?. Clinical Hemorheology and Microcirculation, 2016, 61, 633-643.	1.7	6
237	Microfluidics-based fundamental characterization of external concentration polarization in forward osmosis. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	6
238	Heat capacity of immiscible liquid/fluid interfaces and pressure dependence of the interfacial tension. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4471.	1.7	5
239	Molecular dynamics simulations on specific heat capacity and glass transition temperature of liquid silver. Science Bulletin, 2001, 46, 1051-1053.	1.7	5
240	Sorption Properties of a Single Wall Carbon Nanotube. Journal of Chemical & Engineering Data, 2008, 53, 2451-2453.	1.9	5
241	Adsorption kinetics of methane on a templateâ€synthesized carbon powder and its pellet. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 294-300.	1.5	5
242	An average-value model of kinematic Stirling engine for the study of variable-speed operations of dish-stirling solar-thermal generating system. , 2014 , , .		5
243	A membrane-free micro-fluidic microbial fuel cell for rapid characterization of exoelectrogenic bacteria. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	5
244	Quantitative Analyses of Dynamic Features of Fibroblasts on Different Protein-Coated Compliant Substrates. ACS Biomaterials Science and Engineering, 2017, 3, 2987-2998.	5.2	5
245	Bacterial inactivation via microfluidic electroporation device with insulating micropillars. Electrophoresis, 2021, 42, 1093-1101.	2.4	5
246	Molecular Dynamics Simulation of the Specific Heat of Undercooled Fe-Ni Melts. International Journal of Thermophysics, 2001, 22, 1303-1309.	2.1	4
247	Observation of microbubble attachment onto a hydrophilic glass surface. Chemical Engineering Science, 2002, 57, 1485-1488.	3.8	4
248	Stress fiber response to mechanics: a free energy dependent statistical model. Soft Matter, 2014, 10, 4603.	2.7	4
249	Asymmetric heat transfer in liquid–liquid segmented flow in microchannels. International Journal of Heat and Mass Transfer, 2014, 77, 385-394.	4.8	4
250	Electrokinetically driven continuous-flow enrichment of colloidal particles by Joule heating induced temperature gradient focusing in a convergent-divergent microfluidic structure. Scientific Reports, 2017, 7, 10803.	3.3	4
251	Hydrodynamic Effects on Particle Deposition in Microchannel Flows at Elevated Temperatures. Journal of Heat Transfer, 2018, 140, .	2.1	4
252	Transient characteristics of electric double layer charging and the associated induced-charge electrokinetic flow. Physics of Fluids, 2018, 30, 122005.	4.0	4

#	Article	IF	CITATIONS
253	Water condensate morphologies on a cantilevered microfiber. Journal of Applied Physics, 2020, 127, 244902.	2.5	4
254	Abusing Cache Line Dirty States to Leak Information in Commercial Processors. , 2022, , .		4
255	Theoretical investigation of two-fluid electroosmotic flow in microchannels. Journal of Physics: Conference Series, 2006, 34, 470-474.	0.4	3
256	The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area. Nanotechnology, 2008, 19, 155301.	2.6	3
257	Single-Nozzle Micropumps. , 2009, , .		3
258	Vortex generation in a microfluidic chamber with actuations. Experiments in Fluids, 2014, 55, 1.	2.4	3
259	Permeability model of micro-metal foam with surface micro-roughness. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	3
260	Design method of radiant cooling area based on the relationship between human thermal comfort and thermal balance. Energy Procedia, 2017, 143, 100-105.	1.8	3
261	Enzymatic in situ synthesis of graphene oxide/polypyrrole composites by peroxidase and their electrical capacitance. Canadian Journal of Chemical Engineering, 2019, 97, 869-875.	1.7	3
262	Adsorptive removal of heavy metal ions in water using poly(m-phenylenediamine) synthesized by laccase. Chemical Papers, 2019, 73, 1705-1711.	2.2	3
263	Kinetics of colloidal particle deposition in microfluidic systems under temperature gradients: experiment and modelling. Soft Matter, 2020, 16, 3649-3656.	2.7	3
264	A numerical study on ion concentration polarization and electric circuit performance of an electrokinetic battery. Electrophoresis, 2020, 41, 811-820.	2.4	3
265	Analytical analysis of anisotropic thermophoresis of a charged spheroidal colloid in aqueous media for extremely thin EDL cases. Electrophoresis, 2021, 42, 2391-2400.	2.4	3
266	Analysis of Electroosmotic Flow in a Microchannel Packed With Microspheres., 2004,,.		3
267	Characteristics of a freezing nanosuspension drop in two different schemes. Applied Physics Letters, 2022, 120, .	3.3	3
268	A More Biomimetic Cell Migration Assay with High Reliability and Its Applications. Pharmaceuticals, 2022, 15, 695.	3.8	3
269	Modelling of Melting in Packed Media due to Forced Air Convection with Higher Temperature using Euler-Euler-Lagrangian approach. International Journal of Heat and Mass Transfer, 2022, 194, 123055.	4.8	3
270	Polymer microlens with independent control of radius and focal length for an imaging fiber., 2005,,.		2

#	Article	IF	CITATIONS
271	Design and Fabrication of a Flow Delivery Microdevice with Asymmetric Microelectrodes Pairs. Journal of Physics: Conference Series, 2006, 34, 1112-1116.	0.4	2
272	Study of electroosmosis-driven two-liquid displacement flow in a microcapillary. Journal of Physics: Conference Series, 2006, 34, 283-290.	0.4	2
273	Capillary Filling in Nanochannels. , 2009, , .		2
274	Particulate Fouling and Mitigation Approach in Microchannel Heat Exchanger., 2016, , .		2
275	Enhanced Nucleate Pool Boiling From Microstructured Surfaces Fabricated by Selective Laser Melting. , 2016, , .		2
276	Surface wave measurements with IoT image processing. Journal of Hydro-Environment Research, 2021, 39, 60-70.	2.2	2
277	Simulations of Melting in Fluid-filled Packed Media due to Forced Convection with Higher Temperature. International Journal of Heat and Mass Transfer, 2021, 175, 121358.	4.8	2
278	Dynamic Behavior of Liquid Droplet Impacting on Heated Surfaces. , 2012, , 28-39.		2
279	Trapping of submicron and micron-sized particles using innovative induced-charge electrokinetic flow. , $2014, \ldots$		2
280	NUMERICAL ANALYSIS OF THE EDL EFFECT ON LIQUID FLOW IN MICROCHANNELS. International Journal of Computational Engineering Science, 2003, 04, 421-424.	0.1	1
281	Microfluidic device with asymmetric electrodes for cell and reagent delivery. , 2006, , .		1
282	Simultaneous Measurement of the Effective Thermal Conductivity and Effective Thermal Diffusivity of Nanofluids. , $2008, \ldots$		1
283	Two-Fluid Electroosmotic Flow in Microchannels. , 2008, , .		1
284	A response to †Comments on the effect of liquid layering on the thermal conductivity of nanofluids', E. Doroodchi, T. M. Evans & Dy B. Moghtaderi, 2009. J Nanopart Res 11(6):1501†1507. Journal of Nanoparticle Research, 2010, 12, 2007-2010.	1.9	1
285	Particle Deposition in Microfluidic Devices at Elevated Temperatures. , 0, , .		1
286	Transport of Liquid in Rectangular Microchannels by Electroosmotic Pumping. Microsystems, 2002, , 265-285.	0.3	1
287	Mass Transport in Nanochannels. Micro and Nanosystems, 2010, 2, 286-297.	0.6	1
288	Numerical analysis of thermophoresis of charged colloidal particles in nonâ€Newtonian concentrated electrolyte solutions. Electrophoresis, 2022, , .	2.4	1

#	Article	IF	CITATIONS
289	EFFECTS OF ELECTRIC DOUBLE LAYER AND VISCOUS DISSIPATION IN MICROCAPILLARY. International Journal of Computational Engineering Science, 2003, 04, 243-248.	0.1	О
290	Numerical Simulation of Joule Heating Effect on Electroosmotic Flow and Electrokinetic Mass Transport in Microchannels., 2004,, 527.		0
291	Joule Heating Induced Thermal and Hydrodynamic Development in Microfluidic Electroosmotic Flow., 2004,, 995.		O
292	Transient Joule Heating and Its Effects on Electroosmotic Flow in a Microcapillary Packed Wth Microspheres. , 2005, , 433.		0
293	A microfluidic sensor for dynamic surface tension measurement. , 2005, , .		O
294	Theoretical and experimental study of electroosmosis-driven two-fluid displacement in a microcapillary. , 2006, , .		0
295	Deviation of Electroosmotic Flow From Plug-Like Profile: The Effect of Reservoir Size. , 2007, , 169.		O
296	Large distance liquid pumping by AC electro-osmosis for the delivery of biological cells and reagents in microfluidic devices. , 2007, , .		0
297	Joule Heating Induced Heat Transfer and Its Effects on Electrokinetic Mixing in T-Shape Microfluidic Channels., 2007,,.		O
298	Liquid–Liquid Stratified Flow in Microchannels. , 2008, , 1022-1031.		0
299	Electrokinetic Properties and Their Effect on Thermal Conductivity of Nanofluids. , 2008, , .		O
300	Joule Heating Induced Temperature Gradient Focusing in a Microfluidic Channel With a Sudden Change in Cross Section. , 2008 , , .		0
301	Acoustically Induced Bubbles in a Microfluidic Channel for Mixing Enhancement. , 2009, , .		O
302	Concentration of Samples in Microfluidic Structure Using Joule Heating Effects., 2009,,.		0
303	Influence of Particle Effects on the Material Removal Rate Utilizing Electrokinetic Phenomenon. Advanced Materials Research, 0, 76-78, 27-32.	0.3	O
304	Fabrication of polymer-based reflowed microlenses on optical fibre with control of focal length using differential coating technique. Sadhana - Academy Proceedings in Engineering Sciences, 2009, 34, 607-613.	1.3	0
305	Electroosmotic Flow of Power-Law Fluids in a Slit Microchannel. , 2009, , .		0
306	Fabrication and Experimental Characterization of Nanochannels. , 2009, , .		0

#	Article	IF	Citations
307	Numerical simulations of electrokinetic transport of a particle in a microfluidic confined domain. Proceedings of SPIE, 2010, , .	0.8	O
308	Joule Heating Induced Temperature Gradient Focusing for Microfluidic Concentration of Samples. , 2010, , .		0
309	Aluminum-photoresist dual-layer lift-off process for gold micropattern preparation in cellular researches. , 2010, , .		0
310	Towards High Concentration Enhancement of Microfluidic Temperature Gradient Focusing of Sample Solutes. , $2011, \ldots$		0
311	Preface to Special Topic: Selected Papers from the Second Conference on Advances in Microfluidics and Nanofluidics and Asia-Pacific International Symposium on Lab on Chip. Biomicrofluidics, 2012, 6, 012701.	2.4	0
312	Electrokinetic Power Generation by Forward Osmosis., 2012,,.		0
313	Multi-point laser coherent detection system and its applications in experimental mechanics. Proceedings of SPIE, 2013, , .	0.8	0
314	Some discussion on high-speed-imaging-based optical coherent measurement. Proceedings of SPIE, 2013,	0.8	0
315	Thermal Effect on Electroosmotic Flow in a Slit Microchannel. , 2013, , .		0
316	Flow Boiling Heat Transfer Enhancement from Carbon Nanotube-Enhanced Surfaces. Defect and Diffusion Forum, 0, 348, 20-26.	0.4	0
317	Bubble Translation at Low-frequency Actuation in a Resonator-shaped Microfluidic Chamber. Procedia Engineering, 2015, 126, 711-715.	1.2	0
318	Suppression of Frost Propagation With Micropillar Structure Engineered Surface., 2016,,.		0
319	Back Cover: Biotechnology Journal 5/2019. Biotechnology Journal, 2019, 14, 1970054.	3.5	0
320	10.1063/5.0044935.1., 2021, , .		0
321	A low-Reynolds-number actuator driven by instability: rotating or oscillating. Nonlinear Dynamics, 2021, 106, 2005.	5.2	0
322	Diagnosis of Frequency-Dependent Electrokinetic Flow in Microfluidic Channels., 2007,, 682-686.		0
323	Kinetics of Colloidal Particle Deposition From Electrokinetic Microfluidic Flows., 2009,,.		0
324	Electrokinetic Flow in Porous Media., 2011,, 1-14.		0

#	Article	IF	CITATIONS
325	Effects of Cyclic Uniaxial Stretch on Mammalian Cell Division Direction*. Progress in Biochemistry and Biophysics, 2012, 39, 59-67.	0.3	0
326	Electrokinetics of Non-Newtonian Liquids. , 2013, , 1-8.		0
327	Osmosis and Its Applications. , 2013, , 1-14.		0
328	Experimental Methods of Thermophoresis in Liquids. , 2013, , 1-11.		0
329	Electrokinetic Focusing of Colloidal Particles by Joule Heating Induced Temperature Gradient in a Convergent-Divergent Microfluidic Structure. , 2014 , , .		О
330	Combined Pressure-Driven Flow and Electroosmotic Flow. , 2014, , 1-14.		0
331	Measuring Zeta Potential, Methods. , 2014, , 1-13.		О
332	Temperature Gradient Focusing. , 2014, , 1-9.		0
333	Measuring Zeta Potential, Methods. , 2015, , 1727-1737.		О
334	10.1063/1.4971314.1., 2016, , .		0
335	Efficient arithmetic expression optimization with weighted adjoint matrix. , 2020, , .		O