
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622127/publications.pdf Version: 2024-02-01

MADE P FOFY

#	Article	IF	CITATIONS
1	Loss of miR-24-3p promotes epithelial cell apoptosis and impairs the recovery from intestinal inflammation. Cell Death and Disease, 2022, 13, 8.	6.3	5
2	The ErbB3 Receptor Restricts <i>Bmi1</i> to Regulate Paneth Cells. FASEB Journal, 2022, 36, .	0.5	0
3	ErbB3 Promotes Intestinal Barrier Function and Expression of the Tight Junctional Protein Pmp22. FASEB Journal, 2022, 36, .	0.5	2
4	Loss of Adhesion Gâ€Proteinâ€Coupled Receptor L2 Expression Impacts Colonic Epithelial Proliferation. FASEB Journal, 2022, 36, .	0.5	1
5	SPROUTY2 INHIBITS EXPRESSION OF THE HOST DEFENSE PEPTIDE RELMÎ ² IN THE COLONIC EPITHELIUM. Inflammatory Bowel Diseases, 2021, 27, S28-S28.	1.9	0
6	Sprouty2 limits intestinal tuft and goblet cell numbers through GSK3Î ² -mediated restriction of epithelial IL-33. Nature Communications, 2021, 12, 836.	12.8	30
7	An American Physiological Society cross-journal Call for Papers on "Inter-Organ Communication in Homeostasis and Disease― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L42-L49.	2.9	13
8	ErbB4 regulates interferon signaling in classically activated macrophages. FASEB Journal, 2021, 35, .	0.5	0
9	NRG4-ErbB4 signaling represses proinflammatory macrophage activity. American Journal of Physiology - Renal Physiology, 2021, 320, G990-G1001.	3.4	11
10	Scoping out the future: <i>American Journal of Physiology-Gastrointestinal and Liver Physiology</i> . American Journal of Physiology - Renal Physiology, 2021, 321, G52-G54.	3.4	0
11	Success of Distance Learning During 2020 COVID-19 Restrictions: A Report from Five STEM Training Programs for Underrepresented High School and Undergraduate Learners. Journal of STEM Outreach, 2021, 4, .	0.5	4
12	The Role of FGF19 and MALRD1 in Enterohepatic Bile Acid Signaling. Frontiers in Endocrinology, 2021, 12, 799648.	3.5	9
13	A direct comparison of mouse and human intestinal development using epithelial gene expression patterns. Pediatric Research, 2020, 88, 66-76.	2.3	44
14	A Little Disorder Can Be Healthy: PRAP1 as a Protective Factor in the Intestine. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 855-856.	4.5	1
15	Intracellular Control of \hat{l}^2 -Catenin and Intestinal Cell Fate by SIRT2. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 193-194.	4.5	0
16	Stem and progenitor cells of the gastrointestinal tract: applications for tissue engineering the intestine. , 2020, , 709-721.		0
17	P148 COLONIC SPROUTY2 IS ELEVATED IN INFLAMMATORY BOWEL DISEASE PATIENTS. Inflammatory Bowel Diseases, 2020, 26, S28-S29.	1.9	0
18	The ErbB3 receptor tyrosine kinase regulates expression of Notch target genes and intestinal stem cell markers FASEB Journal, 2020, 34, 1-1.	0.5	0

#	Article	IF	CITATIONS
19	Neuregulinâ€4 Limits Proâ€Inflammatory Cytokine Production in Macrophages. FASEB Journal, 2020, 34, 1-1.	0.5	0
20	Adhesion Gâ€Proteinâ€Coupled Receptor L2 Expression is Lost in Colorectal Cancer but is Also Associated with Colonic Stem Cells. FASEB Journal, 2020, 34, 1-1.	0.5	0
21	The loss of endogenous Neuregulinâ€4 impairs intestinal epithelial recovery from LPSâ€induced injury FASEB Journal, 2020, 34, 1-1.	0.5	0
22	Discordant roles for FGF ligands in lung branching morphogenesis between human and mouse. Journal of Pathology, 2019, 247, 254-265.	4.5	55
23	Cellular Plasticity of Defa4-Expressing Paneth Cells in Response to Notch Activation and Intestinal Injury. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 533-554.	4.5	69
24	Trefoil factor 2 activation of CXCR4 requires calcium mobilization to drive epithelial repair in gastric organoids. Journal of Physiology, 2019, 597, 2673-2690.	2.9	23
25	Farnesoid-X Receptor Inhibition in Macrophages Decreases Intestinal Epithelial Chemokine Expression. Journal of the American College of Surgeons, 2019, 229, S203.	0.5	0
26	Sprouty2 restricts colonic tuft and goblet cell numbers by repressing epithelial ILâ€33 expression. FASEB Journal, 2019, 33, 869.11.	0.5	0
27	The Loss of Endogenous Neuregulinâ€4 Increases Intestinal Epithelial Permeability and Apoptosis. FASEB Journal, 2019, 33, 869.24.	0.5	0
28	Celiac Disease. Gastroenterology, 2018, 154, 2005-2008.	1.3	13
29	Farnesoid-X Receptor Inactivation Can Protect the Intestinal Epithelial Barrier by Decreasing Cytokine Expression in Macrophages. Journal of the American College of Surgeons, 2018, 227, S100-S101.	0.5	0
30	Shortâ€ŧerm and longâ€ŧerm human or mouse organoid units generate tissueâ€engineered small intestine without added signalling molecules. Experimental Physiology, 2018, 103, 1633-1644.	2.0	14
31	Colon Cancers Get a Negative (Selection) Attitude. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 349.	4.5	0
32	Growth Factors in the Intestinal Tract. , 2018, , 71-101.		6
33	Mucosal Restitution and Repair. , 2018, , 683-708.		0
34	Ursodeoxycholic acid protects against intestinal barrier breakdown by promoting enterocyte migration via EGFR- and COX-2-dependent mechanisms. American Journal of Physiology - Renal Physiology, 2018, 315, G259-G271.	3.4	36
35	P070 MACROPHAGE-EXPRESSED ERBB4 PLAYS A PROTECTIVE ROLE IN THE ONSET AND RESOLUTION OF EXPERIMENTAL COLITIS. Gastroenterology, 2018, 154, S37.	1.3	0
36	Loss of Sprouty2 enhances ILâ€33 expression and protects against experimental colitis FASEB Journal, 2018, 32, 873.14.	0.5	0

#	Article	IF	CITATIONS
37	Epidermal growth factor suppresses intestinal epithelial cell shedding via a MAPK dependent pathway Journal of Cell Science, 2017, 130, 90-96.	2.0	30
38	ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death and Disease, 2017, 8, e2622-e2622.	6.3	91
39	Prolonged Absence of Mechanoluminal Stimulation in Human Intestine Alters the Transcriptome and Intestinal Stem Cell Niche. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 367-388.e1.	4.5	22
40	The ErbB3 receptor tyrosine kinase negatively regulates Paneth cells by PI3K-dependent suppression of Atoh1. Cell Death and Differentiation, 2017, 24, 855-865.	11.2	31
41	SERCA directs cell migration and branching across species and germ layers. Biology Open, 2017, 6, 1458-1471.	1.2	5
42	Bacterial Encroachment in Metabolic Syndrome: TooÂMuchÂTogetherness?. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 324-325.	4.5	0
43	The ERBB3 Receptor Tyrosine Kinase Restricts Intestinal Paneth Cell Numbers Through PI 3-Kinase Signaling. Gastroenterology, 2017, 152, S12-S13.	1.3	0
44	Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development. PLoS ONE, 2016, 11, e0146542.	2.5	28
45	127 Loss of Colonic Sprouty-2 Enhances MUC2 and Lgr5 Expression and Protects From DSS-Induced Colitis. Gastroenterology, 2016, 150, S30.	1.3	0
46	Disease-Associated Microbial Communities in Healthy Relatives: A Bacteria-Filled Crystal Ball?. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 710-711.	4.5	1
47	Regenerating Reputations: Are Wnt and Myc the Good Guys After All?. Digestive Diseases and Sciences, 2016, 61, 327-329.	2.3	1
48	1089 Neuregulin-4 Stimulates Pro-Inflammatory Macrophage Apoptosis Through ADAM17 Dependent Cleavage of ErbB4 to Ameliorate Colitis. Gastroenterology, 2016, 150, S217.	1.3	0
49	P-151â€fNeuregulin-4 Induced ErbB4 Signaling in Macrophages Is Protective in DSS Colitis. Inflammatory Bowel Diseases, 2016, 22, S56.	1.9	0
50	Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. American Journal of Physiology - Renal Physiology, 2016, 310, G81-G92.	3.4	79
51	Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiology Ecology, 2015, 91, 1-9.	2.7	232
52	Increased alveolar soluble annexin V promotes lung inflammation and fibrosis. European Respiratory Journal, 2015, 46, 1417-1429.	6.7	15
53	Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine. American Journal of Physiology - Renal Physiology, 2015, 308, G678-G690.	3.4	35
54	ERBB4 is over-expressed in human colon cancer and enhances cellular transformation. Carcinogenesis, 2015, 36, 710-718.	2.8	81

4

#	Article	IF	CITATIONS
55	The Intestinal Stem Cell Niche and Its Regulation by ErbB Growth Factor Receptors. , 2015, , 273-294.		1
56	The Neuregulin Receptors ErbB3 and ErbB4 Have Opposing Effects on Intestinal Paneth Cells. FASEB Journal, 2015, 29, 852.1.	0.5	1
57	Macrophage‧pecific ErbB4 is Induced by DSS Colitis and Regulates Macrophage Survival. FASEB Journal, 2015, 29, 854.2.	0.5	1
58	Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine. Mediators of Inflammation, 2014, 2014, 1-11.	3.0	9
59	ErbB receptors and their growth factor ligands in pediatric intestinal inflammation. Pediatric Research, 2014, 75, 127-132.	2.3	27
60	Bile Acids Differentially Control Intestinal Cell Proliferation via Src Kinase. Journal of the American College of Surgeons, 2014, 219, S17.	0.5	0
61	The ErbB4 Ligand Neuregulin-4 Protects against Experimental Necrotizing Enterocolitis. American Journal of Pathology, 2014, 184, 2768-2778.	3.8	59
62	Secondary Bile Acids Contribute to Intestinal Epithelial Cell Injury via Inhibition of Cell Migration. Journal of the American College of Surgeons, 2014, 219, S74.	0.5	0
63	Mechanisms of Bile Acid-Induced Intestinal Epithelial Cell Death. Journal of the American College of Surgeons, 2014, 219, S14-S15.	0.5	0
64	138 ErbB4 Activation Protects Paneth Cells and Ameliorates Experimental Necrotizing Enterocolitis. Gastroenterology, 2014, 146, S-38.	1.3	0
65	ErbB4 deletion compromises the murine small intestinal stem cell niche and sensitizes the epithelium to TNFâ€induced apoptosis (1119.6). FASEB Journal, 2014, 28, 1119.6.	0.5	0
66	Secondary bile acids as a mechanism of intestinal injury. Journal of the American College of Surgeons, 2013, 217, S13.	0.5	2
67	A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide. DMM Disease Models and Mechanisms, 2013, 6, 1388-99.	2.4	137
68	Fibroblast Growth Factor 10 induces goblet cell hyperplasia independently from Notch signaling. FASEB Journal, 2013, 27, 946.3.	0.5	0
69	EGF suppresses intestinal epithelial cell shedding both in vitro and in vivo via a MEK/ERK dependent pathway. FASEB Journal, 2013, 27, 944.5.	0.5	0
70	Neuregulin-4 Is a Survival Factor for Colon Epithelial Cells both in Culture and in Vivo. Journal of Biological Chemistry, 2012, 287, 39850-39858.	3.4	43
71	FGF9–Pitx2–FGF10 signaling controls cecal formation in mice. Developmental Biology, 2012, 369, 340-348.	2.0	29

72 Mucosal Restitution and Repair. , 2012, , 1147-1168.

#	Article	IF	CITATIONS
73	Abstract 4328: Specific epidermal growth factor receptor autophosphorylation sites promote epithelial cell chemotaxis and restitution. , 2012, , .		0
74	The ErbB4 receptor tyrosine kinase protects colonocytes from apoptosis in vitro and in vivo. FASEB Journal, 2012, 26, 1159.1.	0.5	0
75	IL-13 Induces Colon Epithelial Cell Apoptosis and Barrier Dysfunction in a STAT6-Dependent Manner. Gastroenterology, 2011, 140, S-168.	1.3	0
76	ErbB4 Promotes Colon Epithelial Cell Survival Signals and Tumorigenicity. Gastroenterology, 2011, 140, S-168.	1.3	0
77	STAT6 activation in ulcerative colitis: A new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflammatory Bowel Diseases, 2011, 17, 2224-2234.	1.9	107
78	TNF-α converting enzyme-mediated ErbB4 transactivation by TNF promotes colonic epithelial cell survival. American Journal of Physiology - Renal Physiology, 2011, 301, G338-G346.	3.4	25
79	Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution. American Journal of Physiology - Renal Physiology, 2011, 301, G368-G376.	3.4	31
80	TNF transactivation of EGFR stimulates cytoprotective COX-2 expression in gastrointestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2011, 301, G220-G229.	3.4	39
81	Sprouty keeps bowel kinases regular in colon cancer, while miR-21 targets Sprouty. Cancer Biology and Therapy, 2011, 11, 122-124.	3.4	13
82	ErbB4 promotes cyclooxygenase-2 expression and cell survival in colon epithelial cells. Laboratory Investigation, 2010, 90, 1415-1424.	3.7	24
83	<i>Helicobacter pylori</i> Regulates Cellular Migration and Apoptosis by Activation of Phosphatidylinositol 3-Kinase Signaling. Journal of Infectious Diseases, 2009, 199, 641-651.	4.0	104
84	The ErbB4 Growth Factor Receptor Is Required for Colon Epithelial Cell Survival in the Presence of TNF. Gastroenterology, 2009, 136, 217-226.	1.3	82
85	Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration. American Journal of Physiology - Renal Physiology, 2008, 294, G276-G285.	3.4	94
86	Tumor necrosis factor inhibits ligand-stimulated EGF receptor activation through a TNF receptor 1-dependent mechanism. American Journal of Physiology - Renal Physiology, 2008, 295, G285-G293.	3.4	22
87	Integrin <i>α</i> 1β1 Controls Reactive Oxygen Species Synthesis by Negatively Regulating Epidermal Growth Factor Receptor-Mediated Rac Activation. Molecular and Cellular Biology, 2007, 27, 3313-3326.	2.3	102
88	Cysteine-Rich Domains of Muc3 Intestinal Mucin Promote Cell Migration, Inhibit Apoptosis, and Accelerate Wound Healing. Gastroenterology, 2006, 131, 1501-1517.	1.3	94
89	p38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. EMBO Journal, 2006, 25, 5683-5692.	7.8	108

90 Mucosal Repair and Restitution. , 2006, , 459-475.

#	Article	IF	CITATIONS
91	Epidermal Growth Factor-stimulated Intestinal Epithelial Cell Migration Requires Src Family Kinase-dependent p38 MAPK Signaling. Journal of Biological Chemistry, 2004, 279, 44513-44521.	3.4	110
92	Involvement of the ERK Signaling Cascade in Protein Kinase C-mediated Cell Cycle Arrest in Intestinal Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 9233-9247.	3.4	73
93	Cell cycle- and protein kinase C-specific effects of resiniferatoxin and resiniferonol 9,13,14-ortho-phenylacetate in intestinal epithelial cells. Biochemical Pharmacology, 2004, 67, 1873-1886.	4.4	10
94	Stimulation of protein kinase C-dependent and -independent signaling pathways by bistratene A in intestinal epithelial cells. Biochemical Pharmacology, 2001, 61, 1093-1100.	4.4	25
95	Protein Kinase C Signaling Mediates a Program of Cell Cycle Withdrawal in the Intestinal Epithelium. Journal of Cell Biology, 2000, 151, 763-778.	5.2	109
96	Colonocyte differentiation is associated with increased expression and altered distribution of protein kinase C isozymes. Gastroenterology, 1998, 115, 75-85.	1.3	66
97	Protein Kinase C Isozyme-mediated Cell Cycle Arrest Involves Induction of p21 and p27 and Hypophosphorylation of the Retinoblastoma Protein in Intestinal Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 9424-9435.	3.4	137
98	Regulation of Cell Growth and Differentiation in the Intestinal Epithelium. Inflammatory Bowel Diseases, 1997, 3, 144-145.	1.9	0