
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. Journal of Solid State Electrochemistry, 2009, 13, 51-68.	2.5	273
2	Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure and Applied Chemistry, 2008, 80, 85-104.	1.9	216
3	Responses of site-controlled, plasticized membrane electrodes. Analytical Chemistry, 1988, 60, 295-301.	6.5	182
4	Membrane technology and dynamic response of ion-selective liquid-membrane electrodes. Analytical Chemistry, 1991, 63, 1380-1386.	6.5	144
5	Tailored Transport Through Ion-Selective Membranes for Improved Detection Limits and Selectivity Coefficients. Electroanalysis, 1999, 11, 695-702.	2.9	141
6	Picomolar Detection Limits with Current-Polarized Pb2+Ion-Selective Membranes. Analytical Chemistry, 2001, 73, 4249-4253.	6.5	131
7	Cyclic Voltammograms at Coplanar and Shallow Recessed Microdisk Electrode Arrays: Guidelines for Design and Experiment. Analytical Chemistry, 2009, 81, 130-138.	6.5	128
8	Direct Evidence of Ionic Fluxes Across Ion-Selective Membranes:  A Scanning Electrochemical Microscopic and Potentiometric Study. Analytical Chemistry, 2001, 73, 2104-2111.	6.5	119
9	A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit. Analytical and Bioanalytical Chemistry, 2004, 380, 7-14.	3.7	117
10	Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts. Talanta, 2004, 63, 89-99.	5.5	115
11	Lead-selective neutral carrier based liquid membrane electrode. Analytical Chemistry, 1984, 56, 1127-1131.	6.5	107
12	Microfabricated Potentiometric Electrodes and Their In Vivo Applications Analytical Chemistry, 2000, 72, 336 A-345 A.	6.5	103
13	A tutorial on the application of ion-selective electrode potentiometry: An analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial. Analytica Chimica Acta, 2013, 762, 1-13.	5.4	97
14	Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 361.	1.7	90
15	Peer Reviewed: Tracing the History of Selective Ion Sensors. Analytical Chemistry, 2001, 73, 88 A-97 A.	6.5	78
16	Solid-Contact pH Sensor without CO ₂ Interference with a Superhydrophobic PEDOT-C ₁₄ as Solid Contact: The Ultimate "Water Layer―Test. Analytical Chemistry, 2017, 89, 8468-8475.	6.5	77
17	Response time curves of ion-selective electrodes. Analytical Chemistry, 1976, 48, 1071-1078.	6.5	76
18	Amperometric microcells for alkaline phosphatase assay. Analyst, The, 2002, 127, 235-240.	3.5	75

#	Article	IF	CITATIONS
19	Responses of H+ selective solvent polymeric membrane electrodes fabricated from modified PVC membranes. Talanta, 1993, 40, 957-967.	5.5	74
20	New neutral carrier-based H+ selective membrane electrodes. Journal of Electroanalytical Chemistry, 1992, 327, 137-146.	3.8	71
21	Response time studies on neutral carrier ion-selective membrane electrodes. Analytical Chemistry, 1978, 50, 1627-1631.	6.5	67
22	Spectropotentiometry:Â A New Method for in Situ Imaging of Concentration Profiles in Ion-Selective Membranes with Simultaneous Recording of Potentialâ 'Time Transients. Analytical Chemistry, 1996, 68, 4342-4350.	6.5	61
23	Switched wall jet for dynamic response measurements. Analytical Chemistry, 1987, 59, 2213-2216.	6.5	60
24	Spectroscopic in Situ Imaging of Acid Coextraction Processes in Solvent Polymeric Ion-Selective Electrode and Optode Membranes. Analytical Chemistry, 1998, 70, 1176-1181.	6.5	56
25	PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times. Analytical Chemistry, 2017, 89, 3508-3516.	6.5	53
26	Nanocapsules with "invisible―walls. Chemical Communications, 2010, 46, 1485.	4.1	51
27	Equilibration Time of Solid Contact Ion-Selective Electrodes. Analytical Chemistry, 2015, 87, 6654-6659.	6.5	50
28	Dye-Loaded Porous Nanocapsules Immobilized in a Permeable Polyvinyl Alcohol Matrix: A Versatile Optical Sensor Platform. Analytical Chemistry, 2012, 84, 2695-2701.	6.5	47
29	Spectroscopic Method for the Determination of the Ionic Site Concentration in Solvent Polymeric Membranes and Membrane Plasticizers. Analytical Chemistry, 2002, 74, 4060-4068.	6.5	44
30	Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore–ion complexes in plasticized PVC membranes. Analyst, The, 2008, 133, 635.	3.5	44
31	Reference Electrodes with Ionic Liquid Salt Bridge: When Will These Innovative Novel Reference Electrodes Gain Broad Acceptance?. ACS Sensors, 2019, 4, 549-561.	7.8	44
32	Ion-Selective Microchemical Sensors with Reduced Preconditioning Time. Membrane Biostability Studies and Applications in Blood Analysis. Analytical Letters, 1994, 27, 3039-3063.	1.8	41
33	Toward Feedback-Controlled Anesthesia: Voltammetric Measurement of Propofol (2,6-Diisopropylphenol) in Serum-Like Electrolyte Solutions. Analytical Chemistry, 2012, 84, 7670-7676.	6.5	40
34	Facile Directed Assembly of Hollow Polymer Nanocapsules within Spontaneously Formed Catanionic Surfactant Vesicles. Langmuir, 2014, 30, 7061-7069.	3.5	39
35	A Chronoamperometric Method To Estimate Changes in the Membrane Composition of Ion-Selective Membranes. Analytical Chemistry, 2001, 73, 4599-4606.	6.5	38
36	Propofol detection and quantification in human blood: the promise of feedback controlled, closed-loop anesthesia. Analyst, The, 2015, 140, 98-106.	3.5	38

#	Article	IF	CITATIONS
37	Poly(3-octylthiophene) as solid contact for ion-selective electrodes: contradictions and possibilities. Journal of Solid State Electrochemistry, 2016, 20, 3033-3041.	2.5	37
38	Spectroelectrochemical Microscopy:  Spatially Resolved Spectroelectrochemistry of Carrier-Based Ion-Selective Membranes. Analytical Chemistry, 2005, 77, 2132-2139.	6.5	36
39	Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds. Talanta, 2007, 74, 255-264.	5.5	36
40	A Chronoamperometric Method To Estimate Ionophore Loss from Ion-Selective Electrode Membranes. Analytical Chemistry, 1999, 71, 3673-3676.	6.5	33
41	Dynamic response of precipitate-based ion-selective electrodes in the presence of interfering ions. Analytical Chemistry, 1982, 54, 202-207.	6.5	32
42	Zinc Selective Ionophores for Potentiometric and Optical Sensors. Analytical Letters, 1992, 25, 453-470.	1.8	31
43	Development and study of an amperometric biosensor for the in vitro measurement of low concentration of putrescine in blood. Journal of Proteomics, 2002, 53, 165-175.	2.4	31
44	Studies of Potential Generation Across Membrane Sensors at Interfaces and through Bulk. Accounts of Chemical Research, 1998, 31, 257-266.	15.6	30
45	Mathematical Model of Currentâ€Polarized Ionophoreâ€Based Ionâ€5elective Membranes: Large Current Chronopotentiometry. Electroanalysis, 2008, 20, 259-269.	2.9	30
46	Electrochemical quantification of 2,6-diisopropylphenol (propofol). Analytica Chimica Acta, 2011, 704, 63-67.	5.4	30
47	Chromoionophore-Mediated Imaging of Water Transport in Ion-Selective Membranes Analytical Sciences, 1998, 14, 57-61.	1.6	29
48	Evaluation, Pitfalls and Recommendations for the "Water Layer Test―for Solid Contact Ionâ€selective Electrodes. Electroanalysis, 2020, 32, 781-791.	2.9	29
49	Theoretical interpretation of transient signals obtained with precipitate-based ion-selective electrodes in the presence of interfering ions. Analytical Chemistry, 1985, 57, 1506-1511.	6.5	28
50	How To Assess the Limits of Ion-Selective Electrodes:  Method for the Determination of the Ultimate Span, Response Range, and Selectivity Coefficients of Neutral Carrier-Based Cation Selective Electrodes. Analytical Chemistry, 2006, 78, 942-950.	6.5	28
51	Mathematical Model of Current-Polarized Ionophore-Based Ion-Selective Membranes. Journal of Physical Chemistry B, 2008, 112, 2008-2015.	2.6	28
52	Response time studies for precipitate-based ion-selective electrodes in the range of the lower detection limit. Analytical Chemistry, 1982, 54, 72-76.	6.5	27
53	Electrochemical characterization of aminated PVC-based ion-selective membranes. Electroanalysis, 1993, 5, 725-730.	2.9	27
54	Microfabrication technology of flexible membrane based sensors for in vivo applications. Electroanalysis, 1995, 7, 846-851.	2.9	25

#	Article	IF	CITATIONS
55	Chronopotentiometric method for the assessment of ionophore diffusion coefficients in solvent polymeric membranes. Journal of Solid State Electrochemistry, 2009, 13, 171-179.	2.5	24
56	Surface plasmon resonance aided electrochemical immunosensor for CK-MB determination in undiluted serum samples. Analytical and Bioanalytical Chemistry, 2010, 397, 1873-1881.	3.7	23
57	Amperometric Microcell for Enzyme Activity Measurements. Analytical Chemistry, 1998, 70, 2156-2162.	6.5	22
58	Analytical performances of lipophilic diamides based alkaline earth ion-selective electrodes. Electroanalysis, 1993, 5, 781-790.	2.9	21
59	A glance into the bulk of solvent polymeric pH membranes. Pure and Applied Chemistry, 2001, 73, 17-22.	1.9	20
60	Detrimental changes in the composition of hydrogen ion-selective electrode and optode membranes. Analytica Chimica Acta, 2005, 543, 156-166.	5.4	20
61	Current-polarized ion-selective membranes: The influence of plasticizer and lipophilic background electrolyte on concentration profiles, resistance, and voltage transients. Sensors and Actuators B: Chemical, 2009, 136, 410-418.	7.8	20
62	Multispectral imaging of ion transport in neutral carrier-based cation-selective membranes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 792-804.	1.5	19
63	Synthesis and Characterization of a Novel, Colored Lipophilic Additive for Spectral Imaging the Transport in Ionophore Based Ion-Selective Membranes. Electroanalysis, 2006, 18, 1396-1407.	2.9	19
64	Medical Sensors for the Diagnosis and Management of Disease: The Physician Perspective. ACS Sensors, 2017, 2, 1549-1552.	7.8	19
65	Reverse Current Pulse Method To Restore Uniform Concentration Profiles in Ion-Selective Membranes. 1. Galvanostatic Pulse Methods with Decreased Cycle Time. Analytical Chemistry, 2009, 81, 5146-5154.	6.5	17
66	Toward Feedback Controlled Anesthesia: Automated Flow Analytical System for Electrochemical Monitoring of Propofol in Serum Solutions. Electroanalysis, 2014, 26, 1295-1303.	2.9	17
67	Smallâ€Volume pH Sensing with a Capillary Optode Utilizing Dye‣oaded Porous Nanocapsules in a Hydrogel Matrix. Electroanalysis, 2015, 27, 733-744.	2.9	17
68	Voltammetric determination of diffusion coefficients in polymer membranes. Analyst, The, 2017, 142, 930-937.	3.5	15
69	Assessment of Ionâ€Ionophore Complex Diffusion Coefficients in Solvent Polymeric Membranes. Electroanalysis, 2009, 21, 1923-1930.	2.9	13
70	Interpretation of chronopotentiometric transients of ion-selective membranes with two transition times. Journal of Electroanalytical Chemistry, 2010, 638, 254-261.	3.8	13
71	Wet and dry chemistry kits for total creatine kinase activity using a microfabricated, planar, small-volume, amperometric cell. Analytica Chimica Acta, 1998, 377, 1-12.	5.4	12
72	Electrochemical sensor for tricyclic antidepressants with low nanomolar detection limit: Quantitative Determination of Amitriptyline and Nortriptyline in blood. Talanta, 2022, 239, 123072.	5.5	12

#	Article	IF	CITATIONS
73	Screen-printed amperometric microcell for proline iminopeptidase enzyme activity assay. Biosensors and Bioelectronics, 2000, 15, 265-272.	10.1	11
74	Differences in Electrochemically Deposited PEDOT(PSS) Films on Au and Pt Substrate Electrodes: A Quartz Crystal Microbalance Study. Electroanalysis, 2018, 30, 710-715.	2.9	11
75	Plasticized PVC Membrane Modified Electrodes: Voltammetry of Highly Hydrophobic Compounds. Membranes, 2020, 10, 202.	3.0	10
76	Simple, Single Step Potential Difference Measurement for the Determination of the Ultimate Detection Limit of Ion Selective Electrodes. Electroanalysis, 2006, 18, 1245-1253.	2.9	9
77	To the Memory of ErnÅ' Pungor: A Subjective View on the History of Ionâ€5elective Electrodes. Electroanalysis, 2009, 21, 1887-1894.	2.9	9
78	Reverse Current Pulse Method To Restore Uniform Concentration Profiles in Ion-Selective Membranes. 2. Comparison of the Efficiency of the Different Protocols. Analytical Chemistry, 2009, 81, 5155-5164.	6.5	9
79	Ionâ€Selective Optodes in a Sampling Capillary for Tear Fluid Analysis. Electroanalysis, 2012, 24, 42-52.	2.9	9
80	A Feedback Control Approach to Organic Drug Infusions Using Electrochemical Measurement. IEEE Transactions on Biomedical Engineering, 2016, 63, 506-511.	4.2	8
81	Voltammetric Determination of Diffusion Coefficients in Polymer Membranes: Guidelines to Minimize Errors. Electroanalysis, 2018, 30, 681-689.	2.9	8
82	Microfabricated Amperometric Cells for Multicomponent Analysis. Electroanalysis, 2009, 21, 1944-1954.	2.9	7
83	Kinetic Description of the Membrane–Solution Interface for Ion-Selective Electrodes. ACS Sensors, 2020, 5, 2146-2154.	7.8	6
84	Characterization of Stability of Modified Poly(vinyl chloride) Membranes for Microfabricated Ion-Selective Electrode Arrays in Biomedical Applications. ACS Symposium Series, 1994, , 149-157.	0.5	5
85	Immobilization of fibrinogen antibody on self-assembled gold monolayers for immunosensor applications. Tissue Engineering and Regenerative Medicine, 2014, 11, 10-15.	3.7	5
86	Generation, clearance, toxicity, and monitoring possibilities of unaccounted uremic toxins for improved dialysis prescriptions. American Journal of Physiology - Renal Physiology, 2018, 315, F890-F902.	2.7	5
87	Deposition of EDOT-Decorated Hollow Nanocapsules into PEDOT Films for Optical and Electrochemical Sensing. ACS Applied Nano Materials, 2020, 3, 6328-6335.	5.0	4
88	A method to monitor urinary carbon dioxide in patients with septic shock. Sensors and Actuators B: Chemical, 2016, 236, 77-84.	7.8	3
89	Response of Liquid-Membrane Calcium-Selective Electrodes to Calcium Ion Activity Steps. Analytical Letters, 1991, 24, 505-518.	1.8	2
90	A "Smart―Biosensor-Enabled Intravascular Catheter and Platform for Dynamic Delivery of Propofol to "Close the Loop―for Total Intravenous Anesthesia. Military Medicine, 2021, 186, 370-377.	0.8	2

#	Article	IF	CITATIONS
91	Polymeric membrane-modified voltammetric sensors for lipophilic analytes with nanomolar detection limit: Key parameters influencing the response characteristics. Analytica Chimica Acta, 2021, 1171, 338642.	5.4	2
92	Designing Medical, Point of Care Sensors to Aid Health Care Providers in Diagnosing and Managing Diseases: Addressing Pertinent Issues and Some Contemporary Opportunities. Electroanalysis, 2018, 30, 310-313.	2.9	1
93	Multilayer and Surface Immobilization of EDOT-Decorated Nanocapsules. Langmuir, 2021, 37, 499-508.	3.5	1
94	Urinary pCO ₂ Monitoring System with a Planar Severinghaus Type Sensor. Electroanalysis, 2022, 34, 1587-1597.	2.9	1
95	Konstantin N. Mikhelson: Ion-selective electrodes. Analytical and Bioanalytical Chemistry, 2014, 406, 373-374.	3.7	0