List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622016/publications.pdf Version: 2024-02-01

		6254	10734
256	24,672	80	138
papers	citations	h-index	g-index
325	325	325	10322
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 2007, 7, 1961-1971.	4.9	2,020
2	Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the United States of America, 2010, 107, 11217-11222.	7.1	945
3	African dust aerosols as atmospheric ice nuclei. Geophysical Research Letters, 2003, 30, .	4.0	659
4	Measurements of the concentration and composition of nuclei for cirrus formation. Proceedings of the United States of America, 2003, 100, 14655-14660.	7.1	505
5	Effects of mixing on extinction by carbonaceous particles. Journal of Geophysical Research, 1999, 104, 15941-15954.	3.3	480
6	Improving our fundamental understanding of the role of aerosolâ^'cloud interactions in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5781-5790.	7.1	479
7	Brown carbon in tar balls from smoldering biomass combustion. Atmospheric Chemistry and Physics, 2010, 10, 6363-6370.	4.9	427
8	Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature, 1998, 392, 62-65.	27.8	355
9	High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics, 2013, 13, 6151-6164.	4.9	355
10	Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, 2009, 114, .	3.3	336
11	Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmospheric Chemistry and Physics, 2011, 11, 7669-7686.	4.9	329
12	Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmospheric Chemistry and Physics, 2015, 15, 393-409.	4.9	315
13	The Impact of Giant Cloud Condensation Nuclei on Drizzle Formation in Stratocumulus: Implications for Cloud Radiative Properties. Journals of the Atmospheric Sciences, 1999, 56, 4100-4117.	1.7	301
14	A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. Journal of Geophysical Research, 2004, 109, .	3.3	284
15	Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nature Geoscience, 2009, 2, 402-405.	12.9	282
16	Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmospheric Environment, 2006, 40, 299-311.	4.1	273
17	Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics, 2009, 9, 3303-3316.	4.9	268
18	Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmospheric Chemistry and Physics, 2005, 5, 2617-2634.	4.9	265

#	Article	IF	CITATIONS
19	The Effects of Low Molecular Weight Dicarboxylic Acids on Cloud Formation. Journal of Physical Chemistry A, 2001, 105, 11240-11248.	2.5	258
20	Secondary organic aerosol yields from cloudâ€processing of isoprene oxidation products. Geophysical Research Letters, 2008, 35, .	4.0	238
21	Cloud condensation nucleation activity of biomass burning aerosol. Journal of Geophysical Research, 2009, 114, .	3.3	213
22	Water activity and activation diameters from hygroscopicity data - Part I: Theory and application to inorganic salts. Atmospheric Chemistry and Physics, 2005, 5, 1357-1370.	4.9	207
23	Cloud resolving simulations of Arctic stratus. Atmospheric Research, 1999, 51, 45-75.	4.1	206
24	Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?. Bulletin of the American Meteorological Society, 2007, 88, 541-550.	3.3	202
25	Cloud droplet activation of secondary organic aerosol. Journal of Geophysical Research, 2007, 112, .	3.3	196
26	A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility. Atmospheric Chemistry and Physics, 2008, 8, 6273-6279.	4.9	194
27	Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 – Evidence from measurements. Atmospheric Chemistry and Physics, 2009, 9, 3987-3997.	4.9	191
28	Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmospheric Chemistry and Physics, 2014, 14, 9727-9754.	4.9	188
29	A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM _{2.5} organic carbon. Journal of Geophysical Research, 2008, 113, .	3.3	186
30	Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chemical Reviews, 2015, 115, 4199-4217.	47.7	185
31	A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1. Journal of Geophysical Research, 1998, 103, 16385-16396.	3.3	184
32	A New Method for Retrieving Particle Refractive Index and Effective Density from Aerosol Size Distribution Data. Aerosol Science and Technology, 2002, 36, 1012-1026.	3.1	179
33	Gasâ€particle partitioning of primary organic aerosol emissions: 3. Biomass burning. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,327.	3.3	178
34	Ice formation by black carbon particles. Geophysical Research Letters, 1999, 26, 2429-2432.	4.0	177
35	Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmospheric Chemistry and Physics, 2010, 10, 11471-11487.	4.9	175
36	Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophysical Research Letters, 2009, 36, .	4.0	174

#	Article	IF	CITATIONS
37	Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity. Journal of Geophysical Research, 2003, 108, AAC 15-1.	3.3	172
38	Measurements of reactive trace gases and variable O ₃ formation rates in some South Carolina biomass burning plumes. Atmospheric Chemistry and Physics, 2013, 13, 1141-1165.	4.9	170
39	The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. Journal of Geophysical Research, 1997, 102, 19575-19584.	3.3	169
40	Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Physical Chemistry Chemical Physics, 2009, 11, 7906.	2.8	165
41	Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. Journal of Geophysical Research, 2007, 112, .	3.3	159
42	Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophysical Research Letters, 2009, 36, .	4.0	159
43	Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophysical Research Letters, 1998, 25, 1391-1394.	4.0	156
44	Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open Burning of Wildland Fuels. Aerosol Science and Technology, 2010, 44, i-v.	3.1	156
45	A Continuous-Flow Diffusion Chamber for Airborne Measurements of Ice Nuclei. Journal of Atmospheric and Oceanic Technology, 2001, 18, 725-741.	1.3	152
46	Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME). Journal of Geophysical Research, 2010, 115, .	3.3	150
47	Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,100.	3.3	144
48	Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophysical Research Letters, 2006, 33, .	4.0	137
49	Sources of organic ice nucleating particles in soils. Atmospheric Chemistry and Physics, 2016, 16, 7195-7211.	4.9	137
50	Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate. Atmospheric Environment, 2004, 38, 1859-1868.	4.1	134
51	Measurements of ice nucleating aerosols during SUCCESS. Geophysical Research Letters, 1998, 25, 1383-1386.	4.0	130
52	Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol $\hat{a} \in \hat{a}$ Part 2: Theoretical approaches. Atmospheric Chemistry and Physics, 2009, 9, 3999-4009.	4.9	130
53	Influence of water-soluble organic carbon on cloud drop number concentration. Journal of Geophysical Research, 2005, 110, .	3.3	126
54	Ice nuclei emissions from biomass burning. Journal of Geophysical Research, 2009, 114, .	3.3	125

#	Article	IF	CITATIONS
55	Modification of aerosol mass and size distribution due to aqueous-phase SO2oxidation in clouds: Comparisons of several models. Journal of Geophysical Research, 2003, 108, .	3.3	120
56	Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer. Atmospheric Chemistry and Physics, 2009, 9, 8949-8966.	4.9	119
57	Organic matter matters for ice nuclei of agricultural soil origin. Atmospheric Chemistry and Physics, 2014, 14, 8521-8531.	4.9	117
58	Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,826-11,849.	3.3	116
59	Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environmental Science & Technology, 2019, 53, 10007-10022.	10.0	116
60	Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. Journal of Geophysical Research, 1996, 101, 21391-21402.	3.3	115
61	Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. Journal of Geophysical Research, 2001, 106, 15053-15063.	3.3	115
62	lce nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, 436-448.	1.6	114
63	Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmospheric Environment, 2005, 39, 1393-1404.	4.1	113
64	Water activity and activation diameters from hygroscopicity data - Part II: Application to organic species. Atmospheric Chemistry and Physics, 2006, 6, 795-809.	4.9	111
65	Humidity-dependent optical properties of fine particles during the Big Bend Regional Aerosol and Visibility Observational Study. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	110
66	The impact of rain on ice nuclei populations at a forested site in Colorado. Geophysical Research Letters, 2013, 40, 227-231.	4.0	110
67	A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning. Atmospheric Chemistry and Physics, 2013, 13, 1081-1091.	4.9	110
68	Observations of Ice Nucleating Particles Over Southern Ocean Waters. Geophysical Research Letters, 2018, 45, 11,989.	4.0	110
69	Predicting Particle Critical Supersaturation from Hygroscopic Growth Measurements in the Humidified TDMA. Part I: Theory and Sensitivity Studies. Journals of the Atmospheric Sciences, 2000, 57, 1854-1871.	1.7	107
70	Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics, 2010, 10, 5165-5178.	4.9	104
71	Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bulletin of the American Meteorological Society, 2021, 102, E894-E928.	3.3	103
72	Chemical processing does not always impair heterogeneous ice nucleation of mineral dust particles. Geophysical Research Letters, 2010, 37, .	4.0	102

#	Article	IF	CITATIONS
73	Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proceedings of the United States of America, 2020, 117, 29469-29477.	7.1	100
74	Influence of Functional Groups on Organic Aerosol Cloud Condensation Nucleus Activity. Environmental Science & Technology, 2014, 48, 10182-10190.	10.0	99
75	Emission and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States. ACS Earth and Space Chemistry, 2019, 3, 1237-1247.	2.7	99
76	Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation. Atmospheric Chemistry and Physics, 2010, 10, 11955-11968.	4.9	98
77	Marine and Terrestrial Organic Iceâ€Nucleating Particles in Pristine Marine to Continentally Influenced Northeast Atlantic Air Masses. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6196-6212.	3.3	98
78	Single-parameter estimates of aerosol water content. Environmental Research Letters, 2008, 3, 035002.	5.2	97
79	Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud. Journals of the Atmospheric Sciences, 2010, 67, 2417-2436.	1.7	96
80	A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two Mesocosm Experiments. Journals of the Atmospheric Sciences, 2017, 74, 151-166.	1.7	93
81	The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS. Geophysical Research Letters, 1998, 25, 1387-1390.	4.0	89
82	Loss of fine particle ammonium from denuded nylon filters. Atmospheric Environment, 2006, 40, 4797-4807.	4.1	89
83	Observations of fine and coarse particle nitrate at several rural locations in the United States. Atmospheric Environment, 2008, 42, 2720-2732.	4.1	88
84	The effects of models of aerosol hygroscopicity on the apportionment of extinction. Atmospheric Environment, 1997, 31, 1965-1976.	4.1	86
85	Light Scattering Characteristics of Aerosols as a Function of Relative Humidity: Part l—A Comparison of Measured Scattering and Aerosol Concentrations Using the Theoretical Models. Journal of the Air and Waste Management Association, 2000, 50, 686-700.	1.9	85
86	Characterization of organic aerosol in Big Bend National Park, Texas. Atmospheric Environment, 2002, 36, 5807-5818.	4.1	85
87	Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies. Geophysical Research Letters, 2014, 41, 742-748.	4.0	85
88	Observations of organic species and atmospheric ice formation. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	84
89	Water interaction with hydrophobic and hydrophilic soot particles. Physical Chemistry Chemical Physics, 2008, 10, 2332.	2.8	83
90	Measurements of the Hygroscopic and Deliquescence Properties of Organic Compounds of Different Solubilities in Water and Their Relationship with Cloud Condensation Nuclei Activities. Environmental Science & Technology, 2008, 42, 3602-3608.	10.0	83

#	Article	IF	CITATIONS
91	A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. Journal of Geophysical Research, 2009, 114, .	3.3	83
92	Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous reaction with nitric acid. Physical Chemistry Chemical Physics, 2009, 11, 7826.	2.8	82
93	Satellite observations cap the atmospheric organic aerosol budget. Geophysical Research Letters, 2010, 37, .	4.0	82
94	Ice Formation by Sulfate and Sulfuric Acid Aerosol Particles under Upper-Tropospheric Conditions. Journals of the Atmospheric Sciences, 2000, 57, 3752-3766.	1.7	79
95	Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions. Journal of Geophysical Research, 2012, 117, .	3.3	79
96	Predicting Particle Critical Supersaturation from Hygroscopic Growth Measurements in the Humidified TDMA. Part II: Laboratory and Ambient Studies. Journals of the Atmospheric Sciences, 2000, 57, 1872-1887.	1.7	78
97	Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. Journal of Geophysical Research, 2006, 111, .	3.3	78
98	Particulate-Phase and Gaseous Elemental Mercury Emissions During Biomass Combustion: Controlling Factors and Correlation with Particulate Matter Emissions. Environmental Science & Technology, 2008, 42, 721-727.	10.0	78
99	Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes. Atmospheric Chemistry and Physics, 2015, 15, 6323-6335.	4.9	78
100	On Measuring the Critical Diameter of Cloud Condensation Nuclei Using Mobility Selected Aerosol. Aerosol Science and Technology, 2007, 41, 907-913.	3.1	74
101	Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10458-10470.	3.3	73
102	Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber. Atmospheric Chemistry and Physics, 2017, 17, 11227-11245.	4.9	73
103	Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. Journal of Geophysical Research, 2002, 107, AAC 6-1-AAC 6-15.	3.3	71
104	Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study. Environmental Pollution, 2010, 158, 862-872.	7.5	71
105	Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmospheric Environment, 2013, 64, 66-76.	4.1	71
106	Aerosol Light Scattering Measurements as a Function of Relative Humidity. Journal of the Air and Waste Management Association, 2000, 50, 710-716.	1.9	69
107	Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	69
108	Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments. Journal of Geophysical Research, 2008, 113, .	3.3	69

#	Article	IF	CITATIONS
109	Role of molecular size in cloud droplet activation. Geophysical Research Letters, 2009, 36, .	4.0	69
110	Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,272.	3.3	69
111	Potential impact of Owens (dry) Lake dust on warm and cold cloud formation. Journal of Geophysical Research, 2007, 112, .	3.3	68
112	Ice nucleation behavior of biomass combustion particles at cirrus temperatures. Journal of Geophysical Research, 2009, 114, .	3.3	68
113	Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO. Atmospheric Chemistry and Physics, 2009, 9, 5813-5827.	4.9	68
114	A Mesocosm Double Feature: Insights into the Chemical Makeup of Marine Ice Nucleating Particles. Journals of the Atmospheric Sciences, 2018, 75, 2405-2423.	1.7	67
115	Seasonal Changes of Airborne Bacterial Communities Over Tokyo and Influence of Local Meteorology. Frontiers in Microbiology, 2019, 10, 1572.	3.5	67
116	Stratocumulus processing of gases and cloud condensation nuclei: 1. Trajectory ensemble model. Journal of Geophysical Research, 1998, 103, 19527-19542.	3.3	66
117	Smoke aerosol from biomass burning in Mexico: Hygroscopic smoke optical model. Journal of Geophysical Research, 2001, 106, 4831-4844.	3.3	66
118	An annual cycle of sizeâ€resolved aerosol hygroscopicity at a forested site in Colorado. Journal of Geophysical Research, 2012, 117, .	3.3	65
119	Does cloud processing of aerosol enhance droplet concentrations?. Journal of Geophysical Research, 2000, 105, 24351-24361.	3.3	62
120	Hygroscopic properties of an organic-laden aerosol. Atmospheric Environment, 2005, 39, 4969-4982.	4.1	62
121	Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmospheric Chemistry and Physics, 2014, 14, 2657-2667.	4.9	62
122	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	4.9	62
123	The effects of dimethylsulfide upon marine aerosol concentrations. Atmospheric Environment Part A General Topics, 1991, 25, 2501-2511.	1.3	61
124	Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes. Atmospheric Chemistry and Physics, 2017, 17, 5459-5475.	4.9	61
125	A Method for Single Particle Mass Spectrometry of Ice Nuclei. Aerosol Science and Technology, 2003, 37, 460-470.	3.1	59
126	Drop size-dependent S(IV) oxidation in chemically heterogeneous radiation fogs. Atmospheric Environment, 2001, 35, 5717-5728.	4.1	58

#	Article	IF	CITATIONS
127	Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmospheric Environment, 2006, 40, 2959-2972.	4.1	58
128	Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols – Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols. Atmospheric Chemistry and Physics, 2010, 10, 3775-3785.	4.9	58
129	A seasonal nitrogen deposition budget for Rocky Mountain National Park. Ecological Applications, 2013, 23, 1156-1169.	3.8	58
130	Smoke-impacted regional haze in California during the summer of 2002. Agricultural and Forest Meteorology, 2006, 137, 25-42.	4.8	55
131	The Lake—Induced Convection Experiment and the Snowband Dynamics Project. Bulletin of the American Meteorological Society, 2000, 81, 519-542.	3.3	54
132	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WEâ€CAN Aircraft Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033838.	3.3	54
133	Agricultural harvesting emissions of ice-nucleating particles. Atmospheric Chemistry and Physics, 2018, 18, 13755-13771.	4.9	53
134	Temperature―and Humidityâ€Dependent Phase States of Secondary Organic Aerosols. Geophysical Research Letters, 2019, 46, 1005-1013.	4.0	53
135	The effects of clouds on aerosol and chemical species production and distribution: 2. Chemistry model description and sensitivity analysis. Journal of Geophysical Research, 1997, 102, 23867-23882.	3.3	51
136	Cloud droplet activation of polymerized organic aerosol. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 196-205.	1.6	49
137	Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns. Geophysical Research Letters, 2012, 39, .	4.0	49
138	Particle Size Distributions of Organic Aerosol Constituents during the 2002 Yosemite Aerosol Characterization Study. Environmental Science & Technology, 2006, 40, 4554-4562.	10.0	48
139	Airborne bacteria confirm the pristine nature of the Southern Ocean boundary layer. Proceedings of the United States of America, 2020, 117, 13275-13282.	7.1	48
140	A modeling study of aqueous production of dicarboxylic acids: 2. Implications for cloud microphysics. Journal of Geophysical Research, 2004, 109, .	3.3	47
141	Airborne characterization of smoke marker ratios from prescribed burning. Atmospheric Chemistry and Physics, 2014, 14, 10535-10545.	4.9	47
142	Impacts of chemical reactivity on ice nucleation of kaolinite particles: A case study of levoglucosan and sulfuric acid. Geophysical Research Letters, 2012, 39, .	4.0	46
143	Optical closure experiments for biomass smoke aerosols. Atmospheric Chemistry and Physics, 2010, 10, 9017-9026.	4.9	45
144	Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States. Atmospheric Environment, 2011, 45, 1986-1993.	4.1	45

#	Article	lF	CITATIONS
145	Analysis of source regions for smoke events in Singapore for the 2009 El Nino burning season. Atmospheric Environment, 2013, 78, 219-230.	4.1	45
146	Iceâ€nucleating particle emissions from photochemically aged diesel and biodiesel exhaust. Geophysical Research Letters, 2016, 43, 5524-5531.	4.0	45
147	More Than Emissions and Chemistry: Fire Size, Dilution, and Background Aerosol Also Greatly Influence Nearâ€Field Biomass Burning Aerosol Aging. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5589-5611.	3.3	45
148	Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles. Aerosol Science and Technology, 2010, 44, 830-846.	3.1	44
149	Hygroscopicity frequency distributions of secondary organic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	44
150	Back-trajectory analyses of fine particulate matter measured at Big Bend National Park in the historical database and the 1996 scoping study. Science of the Total Environment, 2001, 276, 185-204.	8.0	43
151	Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes. Geophysical Research Letters, 2009, 36, .	4.0	43
152	The contribution of black carbon to global ice nucleating particle concentrations relevant to mixed-phase clouds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22705-22711.	7.1	43
153	Particulate Nitrate Measurement Using Nylon Filters. Journal of the Air and Waste Management Association, 2005, 55, 1100-1110.	1.9	42
154	Iceâ€nucleating particle emissions from biomass combustion and the potential importance of soot aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5888-5903.	3.3	42
155	Air mass characteristics, aerosol particle number concentrations, and number size distributions at Macquarie Island during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1998, 103, 16351-16367.	3.3	41
156	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032657.	3.3	41
157	On the Drop-Size Dependence of Organic Acid and Formaldehyde Concentrations in Fog. Journal of Atmospheric Chemistry, 2003, 46, 239-269.	3.2	40
158	Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: Size distributions and chemical composition. Journal of Geophysical Research, 2005, 110, .	3.3	40
159	Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods. Geoscientific Model Development, 2016, 9, 111-124.	3.6	40
160	Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States. Atmospheric Environment, 2008, 42, 6655-6669.	4.1	39
161	Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments. Atmospheric Chemistry and Physics, 2015, 15, 11027-11045.	4.9	39
162	Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior. Atmospheric Chemistry and Physics, 2016, 16, 14057-14078.	4.9	38

#	Article	IF	CITATIONS
163	The role of the particle size distribution in assessing aerosol composition effects on simulated droplet activation. Atmospheric Chemistry and Physics, 2010, 10, 5435-5447.	4.9	36
164	SOA Formation by Biogenic and Carbonyl Compounds:Â Data Evaluation and Application. Environmental Science & Technology, 2007, 41, 3904-3910.	10.0	35
165	100 Years of Progress in Cloud Physics, Aerosols, and Aerosol Chemistry Research. Meteorological Monographs, 2019, 59, 11.1-11.72.	5.0	35
166	Aerosol Ion Characteristics During the Big Bend Regional Aerosol and Visibility Observational Study. Journal of the Air and Waste Management Association, 2004, 54, 585-592.	1.9	34
167	Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues. Journal of Geophysical Research, 2007, 112, .	3.3	34
168	The Microphysical Roles of Lower-Tropospheric versus Midtropospheric Aerosol Particles in Mature-Stage MCS Precipitation. Journals of the Atmospheric Sciences, 2017, 74, 3657-3678.	1.7	34
169	Aerosol distributions in the North Atlantic marine boundary layer during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange. Journal of Geophysical Research, 1996, 101, 4455-4467.	3.3	33
170	Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents. Atmospheric Chemistry and Physics, 2010, 10, 6179-6194.	4.9	33
171	Size resolved measurements of springtime aerosol particles over the northern South China Sea. Atmospheric Environment, 2013, 78, 134-143.	4.1	33
172	Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmospheric Environment, 2016, 137, 186-198.	4.1	33
173	Thawing permafrost: an overlooked source of seeds for Arctic cloud formation. Environmental Research Letters, 2020, 15, 084022.	5.2	33
174	Binary nucleation of methanesulfonic acid and water. Journal of Aerosol Science, 1989, 20, 585-607.	3.8	32
175	Gas-phase reactive nitrogen near Grand Teton National Park: Impacts of transport, anthropogenic emissions, and biomass burning. Atmospheric Environment, 2014, 89, 749-756.	4.1	31
176	Organic aerosol emission ratios from the laboratory combustion of biomass fuels. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,850.	3.3	31
177	Utilizing a Storm-Generating Hotspot to Study Convective Cloud Transitions: The CACTI Experiment. Bulletin of the American Meteorological Society, 2021, 102, E1597-E1620.	3.3	30
178	Observations of aerosol volatility and elemental composition at Macquarie Island during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1998, 103, 16511-16524.	3.3	29
179	Deliquescence-controlled activation of organic aerosols. Geophysical Research Letters, 2006, 33, .	4.0	29
180	Simulations of sulfate aerosol dynamics—I. Atmospheric Environment, 1998, 32, 1691-1700.	4.1	28

#	Article	IF	CITATIONS
181	Vertical structure of aerosols, temperature, and moisture associated with an intense African dust event observed over the eastern Caribbean. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4623-4643.	3.3	28
182	The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7913-7935.	3.3	28
183	Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea – Part 1: Observations and source classification. Atmospheric Chemistry and Physics, 2017, 17, 1105-1123.	4.9	28
184	Sources of PM _{2.5} carbonaceous aerosol in Riyadh, Saudi Arabia. Atmospheric Chemistry and Physics, 2018, 18, 3969-3985.	4.9	28
185	Seasonal Variations in Aerosol Composition and Acidity at Shenandoah and Great Smoky Mountains National Parks. Journal of the Air and Waste Management Association, 1997, 47, 411-418.	1.9	27
186	Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5750-5768.	3.3	27
187	Aerosol effects on the anvil characteristics of mesoscale convective systems. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,880.	3.3	26
188	Exploratory cloud-resolving simulations of boundary-layer Arctic stratus clouds. Atmospheric Research, 1998, 47-48, 573-597.	4.1	24
189	Stratocumulus processing of gases and cloud condensation nuclei: 2. Chemistry sensitivity analysis. Journal of Geophysical Research, 1999, 104, 16061-16080.	3.3	24
190	Regional comparison and assimilation of GOCART and MODIS aerosol optical depth across the eastern U.S Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	24
191	Observations of Ice Nucleating Particles in the Free Troposphere From Western US Wildfires. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033752.	3.3	24
192	Cloud Particle Precursors. , 2009, , 291-318.		24
193	Comparisons of aerosol properties measured by impactors and light scattering from individual particles: refractive index, number and volume concentrations, and size distributions. Atmospheric Environment, 2002, 36, 1853-1861.	4.1	23
194	Dilution impacts on smoke aging: evidence in Biomass Burning Observation Project (BBOP) data. Atmospheric Chemistry and Physics, 2021, 21, 6839-6855.	4.9	23
195	Development of wildland fire particulate smoke marker to organic carbon emission ratios for the conterminous United States. Atmospheric Environment, 2011, 45, 395-403.	4.1	22
196	Isolating and identifying atmospheric ice-nucleating aerosols: a new technique. Atmospheric Research, 1998, 46, 263-278.	4.1	21
197	Optical Measurements of Aerosol Size Distributions in Great Smoky Mountains National Park: Dry Aerosol Characterization. Journal of the Air and Waste Management Association, 2000, 50, 665-676.	1.9	21
198	Hygroscopicity of Organic Compounds as a Function of Carbon Chain Length and Carboxyl, Hydroperoxy, and Carbonyl Functional Groups. Journal of Physical Chemistry A, 2017, 121, 5164-5174.	2.5	21

#	Article	IF	CITATIONS
199	Direct Online Mass Spectrometry Measurements of Ice Nucleating Particles at a California Coastal Site. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12157-12172.	3.3	21
200	Comparison of aerosol properties derived from Sun photometer data and ground-based chemical measurements. Geophysical Research Letters, 2002, 29, 1-1-1-3.	4.0	20
201	Transport of pollution to a remote coastal site during gap flow from California's interior: impacts on aerosol composition, clouds, and radiative balance. Atmospheric Chemistry and Physics, 2017, 17, 1491-1509.	4.9	20
202	Studies in binary nucleation: The dibutylphthalate/dioctylphthalate system. Journal of Chemical Physics, 1988, 89, 6442-6453.	3.0	19
203	Correction to "African dust aerosols as atmospheric ice nucleiâ€, Geophysical Research Letters, 2009, 36, .	4.0	19
204	Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park. Journal of the Air and Waste Management Association, 2013, 63, 1245-1263.	1.9	19
205	Atmospheric concentrations and deposition of reactive nitrogen in Grand Teton National Park. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,875.	3.3	19
206	Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 737-752.	4.9	19
207	A Decadal Climatology of Chemical, Physical, and Optical Properties of Ambient Smoke in the Western and Southeastern United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031372.	3.3	19
208	Estimates of Particle Hygroscopicity during the Southeastern Aerosol and Visibility Study. Journal of the Air and Waste Management Association, 2000, 50, 677-685.	1.9	18
209	Light Scattering Characteristics of Aerosols at Ambient and as a Function of Relative Humidity: Part II—A Comparison of Measured Scattering and Aerosol Concentrations Using Statistical Models. Journal of the Air and Waste Management Association, 2000, 50, 701-709.	1.9	18
210	Hygroscopic growth and cloud droplet activation of xanthan gum as a proxy for marine hydrogels. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,803.	3.3	18
211	Potential origin of organic cloud condensation nuclei observed at marine site. Journal of Geophysical Research, 1997, 102, 21997-22012.	3.3	17
212	Observations of smoke-influenced aerosol during the Yosemite Aerosol Characterization Study: 2. Aerosol scattering and absorbing properties. Journal of Geophysical Research, 2005, 110, .	3.3	17
213	Characteristics of Ice Nucleating Particles in and Around California Winter Storms. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11530-11551.	3.3	17
214	Cloud–Aerosol–Turbulence Interactions: Science Priorities and Concepts for a Large-Scale Laboratory Facility. Bulletin of the American Meteorological Society, 2020, 101, E1026-E1035.	3.3	16
215	Aerosol formation during photooxidation of organosulfur species. Atmospheric Environment Part A General Topics, 1991, 25, 2491-2500.	1.3	15
216	Modeling cloud effects on hydrogen peroxide and methylhydroperoxide in the marine atmosphere. Journal of Geophysical Research, 2002, 107, AAC 7-1.	3.3	15

#	Article	IF	CITATIONS
217	Observations of ice nucleation by ambient aerosol in the homogeneous freezing regime. Geophysical Research Letters, 2010, 37, .	4.0	15
218	Critical reflectance derived from MODIS: Application for the retrieval of aerosol absorption over desert regions. Journal of Geophysical Research, 2012, 117, .	3.3	15
219	Evaporation and Growth of Multicomponent Aerosols Laboratory Applications. Aerosol Science and Technology, 1987, 6, 1-14.	3.1	14
220	Simulations of sulfate aerosol dynamics part II. Atmospheric Environment, 1998, 32, 1701-1709.	4.1	14
221	Hourly concentrations and light scattering cross sections for fine particle sulfate at Big Bend National Park. Atmospheric Environment, 2003, 37, 1175-1183.	4.1	14
222	A New Method to Determine the Number Concentrations of Refractory Black Carbon Ice Nucleating Particles. Aerosol Science and Technology, 2014, 48, 1264-1275.	3.1	14
223	<i>A Tale of Two Dust Storms</i> : analysis of a complex dust event in the Middle East. Atmospheric Measurement Techniques, 2019, 12, 5101-5118.	3.1	14
224	Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA. Atmospheric Chemistry and Physics, 2019, 19, 11985-12006.	4.9	13
225	Biomass Burning Smoke and Its Influence on Clouds Over the Western U. S Geophysical Research Letters, 2021, 48, e2021GL094224.	4.0	13
226	Visualization of the seasonal shift of a variety of airborne pollens in western Tokyo. Science of the Total Environment, 2021, 788, 147623.	8.0	13
227	Ice Nucleating Particle Connections to Regional Argentinian Land Surface Emissions and Weather During the Cloud, Aerosol, and Complex Terrain Interactions Experiment. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035186.	3.3	13
228	The Effects of Clouds on Aerosol and Chemical Species Production and Distribution. Part III: Aerosol Model Description and Sensitivity Analysis. Journals of the Atmospheric Sciences, 1998, 55, 921-939.	1.7	12
229	Mesoscale Vortex Development during Extreme Precipitation: Colorado, September 2013. Monthly Weather Review, 2015, 143, 4943-4962.	1.4	12
230	Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033730.	3.3	12
231	Using High Time Resolution Aerosol and Number Size Distribution Measurements to Estimate Atmospheric Extinction. Journal of the Air and Waste Management Association, 2009, 59, 1049-1060.	1.9	11
232	Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City during May 2013. Aerosol and Air Quality Research, 2016, 16, 114-124.	2.1	11
233	The influence of simulated surface dust lofting and atmospheric loading on radiative forcing. Atmospheric Chemistry and Physics, 2019, 19, 10279-10301.	4.9	9
234	The effects of clouds on aerosol and chemical species production and distribution: 1. Cloud model formulation, mixing, and detrainment. Journal of Geophysical Research, 1997, 102, 23851-23865.	3.3	8

#	Article	IF	CITATIONS
235	Is Ice Formation by Sea Spray Particles at Cirrus Temperatures Controlled by Crystalline Salts?. ACS Earth and Space Chemistry, 2021, 5, 2196-2211.	2.7	8
236	Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer. Aerosol Science and Technology, 2016, 50, 679-692.	3.1	6
237	Hygroscopic Organic Aerosols during BRAVO?. Journal of the Air and Waste Management Association, 2003, 53, 1273-1279.	1.9	5
238	Measurement and interpretation of cloud effects on the concentrations of hydrogen peroxide and organoperoxides over Ontario, Canada. Atmospheric Research, 2006, 81, 140-149.	4.1	5
239	Droplet activation of wet particles: development of the Wet CCN approach. Atmospheric Measurement Techniques, 2014, 7, 2227-2241.	3.1	5
240	Use of the Single Particle Soot Photometer (SP2) as a pre-filter for ice nucleation measurements: effect of particle mixing state and determination of SP2 conditions to fully vaporize refractory black carbon. Atmospheric Measurement Techniques, 2018, 11, 3007-3020.	3.1	5
241	Correction to "Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle― Journal of Geophysical Research, 2006, 111, .	3.3	4
242	Classification of aerosol population type and cloud condensation nuclei properties in a coastal California littoral environment using an unsupervised cluster model. Atmospheric Chemistry and Physics, 2019, 19, 6931-6947.	4.9	4
243	Atmospheric aerosol research in the U.S.: 1991-1994. Reviews of Geophysics, 1995, 33, 775-784.	23.0	3
244	Laboratory studies of ice nucleation by aerosol particles in upper tropospheric conditions. AIP Conference Proceedings, 2000, , .	0.4	3
245	Corrigendum to "Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation" published in Atmos. Chem. Phys., 10, 11955–11968, 2010. Atmospheric Chemistry and Physics, 2011, 11, 4025-4025.	4.9	3
246	A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling. Atmospheric Measurement Techniques, 2020, 13, 3235-3261.	3.1	3
247	Constraining Aerosol Phase Function Using Dualâ€View Geostationary Satellites. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035209.	3.3	3
248	Long- and short-term temporal variability in cloud condensation nuclei spectra over a wide supersaturation range in the Southern Great Plains site. Atmospheric Chemistry and Physics, 2022, 22, 6197-6215.	4.9	1
249	Results of a Baghouse Operation and Maintenance Survey on Industry and Utility Coal-Fired Boilers. Journal of the Air Pollution Control Association, 1983, 33, 352-358.	0.5	0
250	Measurements of ice nuclei at high supersaturations. AIP Conference Proceedings, 2000, , .	0.4	0
251	Modeling of global sulfate aerosol number concentrations. AIP Conference Proceedings, 2000, , .	0.4	0

252 Cloud nucleating activities of water-soluble semi-volatile organic compounds. , 2013, , .

#	Article	IF	CITATIONS
253	Investigation of ice nucleation properties of mineral and soil particles. , 2013, , .		0
254	Observations of ice nuclei associated with biomass burning. , 2013, , .		0
255	Corrigendum to "Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site" published in Atmos. Chem. Phys., 15, 1367–1383, 2015. Atmospheric Chemistry and Physics, 2015, 15, 1487-1487.	4.9	Ο
256	An Examination of a Continuous Flow Diffusion Chamber's Performance: Implications for Field Measurements of Ice Nuclei. , 2007, , 450-454.		0