## Christian Amatore

## List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3621936/publications.pdf
Version: 2024-02-01

A DFT and SERS study of synergistic roles of thermodynamics and kinetics during the electrocatalytic
reduction of benzyl chloride at silver cathodes. Journal of Electroanalytical Chemistry, 2022, 914,

116267. | Homeostasis inside Single Activated Phagolysosomes: Quantitative and Selective Measurements of |
| :--- |
| Submillisecond Dynamics of Reactive Oxygen and Nitrogen Species Production with a |
| Nanoelectrochemical Sensor. Journal of the American Chemical Society, 2022, 144, 9723-9733. |

Submillisecond Dynamics of Reactive Oxygen and Nitrogen Species Production with a
Nanoelectrochemical Sensor. Journal of the American Chemical Society, 2022, 144, 9723-9733.
Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode
amperometry. Chemical Science, 2020, 11, 778-785.
$3.7 \quad 39$

Opening the Cobalt/Platinum Hollow Nanospheres by Photoelectrocatalysis To Efficiently Utilize the
12 Inside and Outside for HER. ACS Applied Energy Materials, 2020, 3, 158-162.
$2.5 \quad 2$

13 Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters
Neurotransmitter Release. Angewandte Chemie - International Edition, 2020, 59, 3083-3087.
13 Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters
7.2

29

Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters Neurotransmitter Release. Angewandte Chemie, 2020, 132, 3107-3111.

| 19 | Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angewandte Chemie, 2020, 132, 6777-6780. | 1.6 | 17 |
| :---: | :---: | :---: | :---: |
| 20 | Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angewandte Chemie - International Edition, 2020, 59, 6711-6714. | 7.2 | 43 |
| 21 | Optimization of electrochemical time of flight measurements for precise determinations of diffusion coefficients over a wide range in various media. Electrochimica Acta, 2020, 345, 136113. | 2.6 | 2 |
| 22 | Theory and Simulations for the Electron Transfer/Ion Transfer Mode of SECM with Electroactive Species Present in Both Liquid Phases. ChemElectroChem, 2019, 6, 189-194. | 1.7 | 2 |
| 23 | Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages. Angewandte Chemie, 2019, 131, 7835-7838. | 1.6 | 33 |
| 24 | Electrochemical Measurements of Reactive Oxygen and Nitrogen Species inside Single Phagolysosomes of Living Macrophages. Journal of the American Chemical Society, 2019, 141, 4564-4568. | 6.6 | 117 |
| 25 | Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages. Angewandte Chemie - International Edition, 2019, 58, 7753-7756. | 7.2 | 83 |
| 26 | Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles. Biophysical Chemistry, 2019, 245, 1-5. | 1.5 | 10 |
| 27 | A few key theoretical issues of importance in modern molecular electrochemistry. Current Opinion in Electrochemistry, 2019, 13, 33-39. | 2.5 | 13 |

28 3D Printed Rotating Acentric Binary-Disk Electrode. Analytical Chemistry, 2018, 90, 13217-13221
3.24

| 29 | Surface Heterogeneities Matter in Fast Scan Cyclic Voltammetry Investigations of Catecholamines in Brain with Carbon Microelectrodes of High-Aspect Ratio: Dopamine Oxidation at Conical Carbon Microelectrodes. Journal of the Electrochemical Society, 2018, 165, G3057-G3065. | 1.3 | 12 |
| :---: | :---: | :---: | :---: |
| 30 | Downstream Simultaneous Electrochemical Detection of Primary Reactive Oxygen and Nitrogen Species Released by Cell Populations in an Integrated Microfluidic Device. Analytical Chemistry, 2018, 90, 9386-9394. | 3.2 | 31 |
| 31 | Self-Inhibitory Electron Transfer of the $\mathrm{Co}(\mathrm{III}) / \mathrm{Co}(\mathrm{II})$-Complex Redox Couple at Pristine Carbon Electrode. Analytical Chemistry, 2018, 90, 11115-11123. | 3.2 | 19 |

Theory and Simulation for Optimising Electrogenerated Chemiluminescence from

4, 1719-1730.
33 Theory and Simulations for the Electronâ€ ransfer/lonâ€ $\ddagger$ ransfer Mode of Scanning Electrochemical Microscopy in the Presence or Absence of Homogenous Kinetics. ChemElectroChem, 2017, 4, 240-240.
1.7

0

34 Theoretical Insights in ECL. , 2017, , 215-256.
Molecular electrochemistry: A central method to understand the metabolic activation of therapeutic
35 agents. The example of metallocifen anti-cancer drug candidates. Current Opinion in
2.5
10
Electrochemistry, 2017, 2, 7-12.
$\hat{a} €^{\sim}$ Full fusionâ $€^{\text {TM }}$ is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells.
20160684.
Realâ€Time Intracellular Measurements of ROS and RNS in Living Cells with Single Coreâ€"Shell Nanowire

Electrodes. Angewandte Chemie, 2017, 129, 13177-13180. $\quad$| Realâ€đime Intracellular Measurements of ROS and RNS in Living Cells with Single Coreâ€"Shell Nanowire |
| :--- |
| 42 |
| Electrodes. Angewandte Chemie - International Edition, 2017, 56, 12997-13000. |$\quad 1.6$

Theory of Microwell Arrays Performing as Generatorsâ €"Collectors Based on a Single Bipolar Plane
Electrode. ChemElectroChem, 2016, 3, 487-494.

The evidence for open and closed exocytosis as the primary release mechanism. Quarterly Reviews of Biophysics, 2016, 49, el2.
2.4

88
On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes.
55 Faraday Discussions, 2016, 193, 65-79.
59 Nerve Cell Varicosities in <i>Drosophila<|i> Larvae. Angewandte Chemie - International Edition, 2015, ..... 7.2 ..... 44
54, 13609-13612.
61 Development and Validation of an Analytical Model for Predicting Chronoamperometric Responses of Random Arrays of Microâ€•and Nanodisk Electrodes. ChemElectroChem, 2015, 2, 1279-1291. ..... 1.7 ..... 20
Synthesis, Characterization, and Biological Properties of Osmiumâ€Based Tamoxifen Derivatives â€" 62 Comparison with Their Homologues in the Iron and Ruthenium Series. European Journal of Inorganic Chemistry, 2015, 2015, 4217-4226.
Realâ€time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within
63 Selfâ€reconstructed Neuromuscular Junctions. Angewandte Chemie - International Edition, 2015, 54, ..... 7.2 ..... 85
9313-9318.
64 Vesicular exocytosis and microdevices â€" microelectrode arrays. Analyst, The, 2015, 140, 3687-3695.1.725
65 Three-electrode analytical and preparative electrochemistry in micro-volume hanging droplets.
Electrochemistry Communications, 2015, 54, 41-45.4.079
In Situ Biosynthesis of Fluorescent Platinum Nanoclusters: Toward Self-Bioimaging-Guided Cancer
Theranostics. ACS Applied Materials \& Interfaces, 2015, 7, 18163-18169. 66
Strong and Unexpected Effects of Diffusion Rates on the Generation of Electrochemiluminescence by
$67 \quad$ Amine/Transitionâ€Metal(II) Systems. ChemElectroChem, 2015, 2, 811-818. 1.7 ..... 20In vivo accurate target bio-marking of tumors through in situ biosynthesized fluorescent zinc1.714nanoclusters. RSC Advances, 2015, 5, 74844-74849.Evaluation of photosynthetic electrons derivation by exogenous redox mediators. Biophysical1.533Chemistry, 2015, 205, 1-8.Interactions between Human Antibodies and Synthetic Conformational Peptide Epitopes: Innovative70 Approach for Electrochemical Detection of Biomarkers of Multiple Sclerosis at Platinum Electrodes.Electrochimica Acta, 2015, 176, 1239-1247.
Electrochemically Driven Supramolecular Interaction of Quinones and Ferrocifens: An Example of
Redox Activation of Bioactive Compounds. Current Topics in Medicinal Chemistry, 2015, 15, 136-162.1.026

| 73 | Nanoelectrode for Amperometric Monitoring of Individual Vesicular Exocytosis Inside Single Synapses. Angewandte Chemie - International Edition, 2014, 53, 12456-12460. | 7.2 | 130 |
| :---: | :---: | :---: | :---: |
| 74 | Electrochemical Conversion of Dichloroacetic Acid to Chloroacetic Acid in Conventional Cell and in Two Microfluidic Reactors. ChemElectroChem, 2014, 1, 116-124. | 1.7 | 20 |
| 75 | A new strategy for eliminating interference from ECâ€ ${ }^{2}$ mechanism during analytical measurements based on plane-band-recessed microdisk array electrodes. Electrochemistry Communications, 2014, 38, 61-64. | 2.3 | 10 |
| 76 | Realâ€đime Monitoring of Auxin Vesicular Exocytotic Efflux from Single Plant Protoplasts by Amperometry at Microelectrodes Decorated with Nanowires. Angewandte Chemie - International Edition, 2014, 53, 2643-2647. | 7.2 | 29 |
| 77 | Three Roles for the Fluoride Ion in Palladiumâ€Catalyzed Hiyama Reactions: Transmetalation of [ArPdFL<sub>2<\|sub>] by Arâ $€^{2} \mathrm{Si}(\mathrm{OR})<$ sub>3</sub>. Angewandte Chemie - International Edition, 2014, 53, 6982-6985. | 7.2 | 30 |
| 78 | Uncovering the Missing Link between Molecular Electrochemistry and Electrocatalysis: Mechanism of the Reduction of Benzyl Chloride at Silver Cathodes. ChemElectroChem, 2014, 1, 227-240. | 1.7 | 51 |
| 79 | Quantitative Analyses of ROS and RNS Production in Breast Cancer Cell Lines Incubated with Ferrocifens. ChemMedChem, 2014, 9, 1286-1293. | 1.6 | 46 |
| 80 | Monitoring and Quantifying the Passive Transport of Molecules Through Patchấ"Clamp Suspended Real and Model Cell Membranes. Angewandte Chemie - International Edition, 2014, 53, 3192-3196. | 7.2 | 12 |
| 81 | Simultaneous and multisite tumor rapid-target bioimaging through in vivo biosynthesis of fluorescent gold nanoclusters. RSC Advances, 2014, 4, 37790-37795. | 1.7 | 26 |
| 82 | Electrochemical Detection of Nitric Oxide and Peroxynitrite Anion in Microchannels at Highly Sensitive Platinum-Black Coated Electrodes. Application to ROS and RNS Mixtures prior to Biological Investigations. Electrochimica Acta, 2014, 144, 111-118. | 2.6 | 37 |
| 83 | Oxidative Sequence of a Ruthenocene-Based Anticancer Drug Candidate in a Basic Environment. Organometallics, 2014, 33, 4940-4946. | 1.1 | 18 |
| 84 | Gold atomic contact: Electron conduction in the presence of interfacial charge transfer. Electrochemistry Communications, 2014, 47, 41-44. | 2.3 | 2 |
| 85 | Kinetic Data on the Synergetic Role of Amines and Water in the Reduction of Phosphineâ€ Ligated Palladium(II) to Palladium(0). European Journal of Organic Chemistry, 2014, 2014, 4709-4713. | 1.2 | 24 |

91
92

> Amperometric detection of vesicular exocytosis from BON cells at carbon fiber microelectrodes.
2.6

21
Electrochimica Acta, 2014, 126, 74-80.

Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Scientific Reports, 2014, 4, 4384.
1.6

102
93 Vesicular release of neurotransmitters: converting amperometric measurements into size, dynamics
1.6
and energetics of initial fusion pores. Faraday Discussions, 2013, 164, 33.

Mechanism of Palladiumâ€€atalyzed Suzukiâ€"Miyaura Reactions: Multiple and Antagonistic Roles of
Anionic â€œBasesâ€•and Their Countercations. Chemistry - A European Journal, 2013, 19, 10082-10093.
1.7

195

Editorial: From Fundamental Science to Product Development: An <i>Electrochemical Paradigm</i>.
ChemPhysChem, 2013, 14, 2007-2008.
ChemPhysChem, 2013, 14, 2007-2008.
$1.0 \quad 0$

96 Direct Electroanalytical Method for Alternative Assessment of Global Antioxidant Capacity Using
$3.2 \quad 32$
Microchannel Electrodes. Analytical Chemistry, 2013, 85, 9057-9063.

Highly Sensitive Platinumâ€Black Coated Platinum Electrodes for Electrochemical Detection of
Hydrogen Peroxide and Nitrite in Microchannel. Electroanalysis, 2013, 25, 895-902.
$1.5 \quad 71$

Synthesis, Characterization, and Antiproliferative Activities of Novel Ferrocenophanic Suberamides
98 against Human Triple-Negative MDA-MB-231 and Hormone-Dependent MCF-7 Breast Cancer Cells.
Organometallics, 2013, 32, 5926-5934.

99 Apoptosis induction and inhibition of drug resistant tumor growth in vivo involving
daunorubicin-loaded grapheneâ€"gold composites. Journal of Materials Chemistry B, 2013, 1, 493-499.

New theoretical insights into the competitive roles of electron transfers involving adsorbed and
homogeneous phases. Journal of Electroanalytical Chemistry, 2013, 688, 320-327.

101 Surface grafting of a Ï€-conjugated amino-ferrocifen drug. Journal of Electroanalytical Chemistry,
2013, 699, 21-27.

In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters.
102 Scientific Reports, 2013, 3, 1157.
1.6

166

A New Approach for the Simulation of Electrochemiluminescence (ECL). ChemPhysChem, 2013, 14,
2237-2250.
1.0

34
The effect of protic electron donor aromatic substituents on ferrocenic and [3]ferrocenophanic anilines and anilides: Some aspects of structureấ "activity relationship studies on organometallic compounds with strong antiproliferative effects. Journal of Organometallic Chemistry, 2013, 744,
compou
92-100.
Benzyl Chloride Electroreduction on Ag Cathodes in CH3CN in the Presence of Small Amounts of
105 Water: Evidences of Quantitative Effects on Reaction Rates and Mechanism. Electrocatalysis, 2013, 4,
1.5
0.8

8

11 353-357.

106 NHCâ€Capped Cyclodextrins (ICyDs): Insulated Metal Complexes, Commutable Multicoordination Sphere, and Cavityâ€Dependent Catalysis. Angewandte Chemie - International Edition, 2013, 52, 7213-7218.

Evaluation of the anti-oxidant properties of a SOD-mimic Mn-complex in activated macrophages.
113 Direct electrochemical reduction of organic halide droplets dispersed in water. RSC Advances, 2012,
2,5398 .

Electrochemistry of a ferrocene-grafted cell-penetrating peptide. Electrochimica Acta, 2012, 80, 180-186.

| 115 | Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proceedings of the National Academy of Sciences of the United States of Am 109, 11534-11539. |
| :---: | :---: |
| 116 | Deciphering the Activation Sequence of Ferrociphenol Anticancer Drug Candidates. Chemi European Journal, 2012, 18, 6581-6587. |
| 117 | Mechanistic Origin of Antagonist Effects of Usual Anionic Bases (OH<sup>â" </sup>,) Tj ET |
| 118 | Euronean lournal. 2012.,18.,6616-662.5. <br> Mass Transport at Microband Electrodes: Transient, Quasiâ€Steadyâ€State, and Convective ChemPhysChem, 2012, 13, 1562-1568. |
| 119 | Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III)-Schiff base complexes as catalysts. Electrochimica Acta, 2012, 75, 366-370. |

Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophysical Chemistry, 2012, 162, 14-21.
1.5

34

A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in
121 solution under spherical or cylindrical diffusion. Russian Journal of Electrochemistry, 2012, 48,
0.3

593-599.

A Novel Approach to the Simulation of Electrochemical Mechanisms Involving Acute Reaction Fronts at Disk and Band Microelectrodes. ChemPhysChem, 2012, 13, 845-859.
1.0

21

## The Triple Role of Fluoride lons in Palladiumâ€Catalyzed Suzukiâ€"Miyaura Reactions: Unprecedented <br> 123 Transmetalation from [ArPdFL<sub>2</sub>] Complexes. Angewandte Chemie - International Edition,

7.2

112
2012, 51, 1379-1382.
An organometallic derivative of a BAPTA ligand: towards electrochemically controlled cation release in biocompatible media. Chemical Communications, 2011, 47, 5199.
2.2

10
Electrochemically active phenylenediamine probes for transition metal cation detection. New Journal
of Chemistry, 2011, 35, 709 .

A density functional theory approach to mushroom-like platinum clusters on palladium-shell over Au
128 core nanoparticles for high electrocatalytic activity. Physical Chemistry Chemical Physics, 2011, 13,
1.3
1.4

15
of Chemistry, 2011, 35, 709. 5441.

129 Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical
3.7

172
Science, 2011, 2, 531-539.
6.6

114
130 Do Molecular Conductances Correlate with Electrochemical Rate Constants? Experimental Insights. Journal of the American Chemical Society, 2011, 133, 7509-7516.

| 131 | Theory and experiments of microelectrodes performing as concentration probes within microfluidic channels with high temporal resolution. Electrochemistry Communications, 2011, 13, 1459-1461. | 2.3 | 14 |
| :---: | :---: | :---: | :---: |
| 132 | Electrochemical analysis of the interactions and reactivity of ferrocene-based drugs with a lipid environment: A qualitative overview. Inorganica Chimica Acta, 2011, 374, 59-68. | 1.2 | 14 |
| 133 | Molecular Motion Inside an Adsorbed [5:1] Fullerene Hexaadduct Observed by Ultrafast Cyclic Voltammetry. Angewandte Chemie - International Edition, 2011, 50, 2364-2367. | 7.2 | 47 |
| 134 | Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles. Angewandte Chemie - International Edition, 2011, 50, 5081-5084. | 7.2 | 68 |
| 135 | Auâ€"Pd Coreâ€"Shell Nanoparticles Catalyze Suzukiâ€"Miyaura Reactions in Water through Pd Leaching. Angewandte Chemie - International Edition, 2011, 50, 12184-12188. | 7.2 | 144 |
| 136 | Gold Nanoclusters and Graphene Nanocomposites for Drug Delivery and Imaging of Cancer Cells. Angewandte Chemie - International Edition, 2011, 50, 11644-11648. | 7.2 | 275 |
| 137 | Kinetic Data for the Transmetalation/Reductive Elimination in Palladiumâ€Catalyzed Suzukiâ€"Miyaura Reactions: Unexpected Triple Role of Hydroxide lons Used as Base. Chemistry - A European Journal, 2011, 17, 2492-2503. | 1.7 | 318 |

138 Replies to comments contained in â€œThe True History of Adaptive Grids in Electrochemical Simulationsâ€• by D. Britz [Electrochim. Acta 56 (2011) 4420â€"4421]. Electrochimica Acta, 2011, 56, 4422-4423.
2.6

4
Electrochemistry at gold nanoparticles deposited on dendrimers assemblies adsorbed onto gold and platinum surfaces. Journal of Electroanalytical Chemistry, $2011,659,76-82$.

Anodic abatement of organic pollutants in water in micro reactors. Journal of Electroanalytical Chemistry, 2010, 638, 293-296.
1.9

56
149 A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in
solution: Application to model mechanisms. Electrochemistry Communications, 2010, 12, 1165-1169.
$150 \quad$ Microchip for ultrafast voltammetry. Electrochemistry Communications, 2010, 12, 897-900.

152 Theoretical study of the EE reaction mechanism with comproportionation and different diffusivities of reactants. Electrochemistry Communications, 2010, 12, 1378-1382.
2.3

20

$$
\begin{aligned}
& 153 \text { The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for } \\
& \text { electrical measurement of single molecules. Nanotechnology, 2010, 21, } 274012 \text {. }
\end{aligned}
$$

Further insights into hydrophobic interactions between ferrocenyl-tamoxifen drugs and non-polar
molecular architectures at electrode surfaces. Journal of Electroanalytical Chemistry, 2009, 635,
$16-19$.

170 Ultrasound-promoted aromatic nucleophilic substitution of dichlorobenzene iron(II) complexes.
$0.7 \quad 5$
Exploring the first steps of an electrochemically-triggered controlled polymerization sequence:
Activation of alkyl- and benzyl halide initiators by an electrogenerated FellSalen complex. Journal of
Electroanalytical Chemistry, 2009, 633, 99-105. (The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of

Electrochemical Determination of Flow Velocity Profile in a Microfluidic Channel from Steady-State
174 Currents: Numerical Approach and Optimization of Electrode Layout. Analytical Chemistry, 2009, 81, 7667-7676.
$3.2 \quad 10$
Capacitive and Solution Resistance Effects on Voltammetric Responses at a Disk Microelectrode
175 Covered with a Self-Assembled Monolayer in the Presence of Electron Hopping. Analytical Chemistry,
$3.2 \quad 11$ 2009, 81, 8545-8556.
Numerical Simulation of Diffusion Processes at Recessed Disk Microelectrode Arrays Using the
3.2
37 Quasi-Conformal Mapping Approach. Analytical Chemistry, 2009, 81, 4397-4405.
3

> 177 Invariance of Exocytotic Events Detected by Amperometry as a Function of the Carbon Fiber Microelectrode Diameter. Analytical Chemistry, 2009, 81, 3087-3093.
3.2

26

A [3]Ferrocenophane Polyphenol Showing a Remarkable Antiproliferative Activity on Breast and Prostate Cancer Cell Lines. Journal of Medicinal Chemistry, 2009, 52, 4964-4967.
Vitamin C stimulates or attenuates reactive oxygen and nitrogen species (ROS, RNS) production
179 depending on cell state: Quantitative amperometric measurements of oxidative bursts at PLB-985 and

| 181 | Theoretical Trends of Diffusion and Reaction into Tubular Nanoâ€•and Mesoporous Structures: General Physicochemical and Physicomathematical Modeling. Chemistry - A European Journal, 2008, 14, 5449-5464. | 1.7 | 16 |
| :---: | :---: | :---: | :---: |
| 182 | Reactivity and Antiproliferative Activity of Ferrocenylâ€"Tamoxifen Adducts with Cyclodextrins against Hormoneâ€łndependent Breastâ€€ancer Cell Lines. Chemistry - A European Journal, 2008, 14, 8195-8203. | 1.7 | 75 |
| 183 | Is there an Intrinsic Limit to the Size of 2D Supracrystals Built from Weakly Interacting Nanoparticles?. Chemistry - A European Journal, 2008, 14, 8615-8623. | 1.7 | 7 |
| 184 | $\operatorname{Pd}(\mathrm{OAc})\langle s u b\rangle 2</ s u b\rangle\|<i\rangle p<\|i\rangle$ â $\in$ Benzoquinoneâ $€$ Catalyzed Anaerobic Electrooxidative Homocoupling of Arylboronic Acids, Arylboronates and Aryltrifluoroborates in DMF and/or Water. European Journal of Organic Chemistry, 2008, 2008, 4567-4570. | 1.2 | 83 |
| 185 | Electrochemically Driven Release of Picomole Amounts of Calcium lons with Temporal and Spatial Resolution. Angewandte Chemie - International Edition, 2008, 47, 5211-5214. | 7.2 | 25 |
| 186 | Supramolecular effects of cyclodextrins on the electrochemical reduction and reactivity of aromatic carbonyl compounds. Journal of Electroanalytical Chemistry, 2008, 621, 134-145. | 1.9 | 16 |
| 187 | Electrochemical attachment of a conjugated aminoâ€"ferrocifen complex onto carbon and metal surfaces. Journal of Electroanalytical Chemistry, 2008, 619-620, 169-175. | 1.9 | 43 |
| 188 | Rates of the Oxidative Addition of Benzyl Halides to a Metallacyclic Palladium(II) Complex and of the Reductive Elimination from a Benzyl-Palladium(IV) Complex. Organometallics, 2008, 27, 4549-4554. | 1.1 | 55 |
| 189 | Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 2. Electrochemical Regimes at Double Microband Assemblies under Steady State. Analytical Chemistry, 2008, 80, 9483-9490. | 3.2 | 83 |
| 190 | Direct Monitoring of Ultrafast Redox Commutation at the Nanosecond and Nanometer Scales by Ultrafast Voltammetry: From Molecular Wires to Cation Releasing Systems. Israel Journal of Chemistry, 2008, 48, 203-214. | 1.0 | 21 |
| 191 | Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chemical Reviews, 2008, 108, 2585-2621. | 23.0 | 354 |
| 192 | Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chemical Communications, 2008, , 2612. | 2.2 | 181 |
| 193 | General Concept of High-Performance Amperometric Detector for Microfluidic (Bio)Analytical Chips. Analytical Chemistry, 2008, 80, 4976-4985. | 3.2 | 37 |


| 199 | Electrochemical Study of Pharmacological Activity at Single Cells: Beta-lapachone Effect on Oxidative Stress of Macrophages. ECS Transactions, 2007, 3, 3-11. | 0.3 | 3 |
| :---: | :---: | :---: | :---: |
| 200 | Palladium/Benzoquinone-Catalyzed Electrochemical Oxidation of Alcohols Under Anaerobic Conditions. Synlett, 2007, 2007, 2173-2178. | 1.0 | 22 |
| 201 | Electrochemical Study of Methyl 2-[p-Nitrophenyl(hydroxy)methyl]acrylate. Journal of the Electrochemical Society, 2007, 154, P121. | 1.3 | 7 |
| 202 | Concerted activities of nitric oxide synthases and NADPH oxidases in PLB-985 cells. Biochemical and Biophysical Research Communications, 2007, 361, 493-498. | 1.0 | 14 |
| 203 | Rate and Mechanism of the Heck Reactions of Arylpalladium Complexes Ligated by a Bidentate P,P Ligand with an Electron-Rich Alkene (Isobutyl Vinyl Ether). Organometallics, 2007, 26, 1757-1761. | 1.1 | 47 |
| 204 | Fullerodendrimers with a tris-isothiocyanate core allowing their anchoring onto gold electrodes. New Journal of Chemistry, 2007, 31, 1395. | 1.4 | 16 |
| 205 | The influence of phenolic hydroxy substitution on the electron transfer and anti-cancer properties of compounds based on the 2-ferrocenyl-1-phenyl-but-1-ene motif. Dalton Transactions, 2007, , 5073. | 1.6 | 83 |
| 206 | Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 1. Steady-State Regimes at a Single Electrode. Analytical Chemistry, 2007, 79, 8502-8510. | 3.2 | 84 |
| 207 | Time-Dependent Diffusionâ^Migration at Cylindrical and Spherical Microelectrodes:Â Steady- and Quasi-Steady-State Analytical Solution Can Be Used under Transient Conditions. Analytical Chemistry, 2007, 79, 6341-6347. | 3.2 | 19 |
| 208 | Palladium(0)-Catalyzed Allylic Aminations:Â Kinetics and Mechanism of the Reaction of Secondary Amines with Cationic [(1.3-allyl)PdL2]+Complexesâ€. Organometallics, 2007, 26, 1875-1880. | 1.1 | 29 |
| 209 | Comparative Oxidative Addition of Transition-Metal lodocyclopentadienyl Complexes (1.5-C5H4-I)MLn (M) Tj ETQq1 1.0 .784314 rgBT Organometallics, 2007, 26, 3887-3890. |  |  |

217 Ultrafast Voltammetry for Probing Interfacial Electron Transfer in Molecular Wires. ChemPhysChem,
The Nature and Efficiency of Neurotransmitter Exocytosis also Depend on Physicochemical1.0Parameters. ChemPhysChem, 2007, 8, 1597-1605.14In Situ and On-Line Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based on220 Microelectrochemistry: Optimization of Channel Geometrical Parameters for Best Performance of$1.0 \quad 7$Flow Profile Reconstruction. ChemPhysChem, 2007, 8, 1870-1874.
221 Relationship between amperometric pre-spike feet and secretion granule composition in Chromaffin ..... 1.5 ..... 43 cells: An overview. Biophysical Chemistry, 2007, 129, 181-189.On the formation of $\mathrm{Pd}(\mathrm{II})$ complexes of Trost modular ligand involving Nâ $€^{\prime \prime} \mathrm{H}$ activation or $\mathrm{P}, \mathrm{O}$222 coordination in Pd-catalyzed allylic alkylations. Journal of Organometallic Chemistry, 2007, 692,1457-1464.
Alteration of diffusional transport by migration and natural convection. Theoretical and direct
223 experimental evidences upon monitoring steady-state concentration profiles at planar electrodes. ..... 1.9 ..... 33 Journal of Electroanalytical Chemistry, 2007, 601, 17-28.
224 Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry.Biophysical Chemistry, 2007, 127, 165-171.
225 Reconstruction of hydrodynamic flow profiles in a rectangular channel using electrochemicalmethods of analysis. Electrochimica Acta, 2007, 53, 1100-1106.608, 125-132.
227 Electrochemical oxidation of half-open ruthenocene compounds. Role of acyclic ligands on acetonitrile coordination. Journal of Electroanalytical Chemistry, 2007, 611, 96-106.conditions. Journal of Electroanalytical Chemistry, 2006, 593, 194-202.

Effect of the Leaving Group on the Rate and Mechanism of the Palladium-Catalyzed Isomerization of
238 Cyclic Allylic Benzoates in Allylic Substitutions. European Journal of Organic Chemistry, 2006, 2006,
241 Mapping Electrochemiluminescence as Generated at Double-Band Microelectrodes by Confocal Microscopy under Steady State. ChemPhysChem, 2006, 7, 1322-1327.
243 Modelling release of nitric oxide in a slice of rat's brain: describing stimulated functional hyperemia
245 Mesure directe in situ de la vitesse dâ $€^{T M}$ un Ã Ocoulement microfluidique par couplage Ã@lectrochimique entre deux microbandes parallÂ̈les. Houille Blanche, 2006, 92, 60-64.
$0.3 \quad 5$Diffusion within nanometric and micrometric spherical-type domains limited by nanometric ring or
246 pore active interfaces. Part 1: conformal mapping approach. Journal of Electroanalytical Chemistry,2005, 575, 103-123.
247 Electrochemistry of $\hat{12}$-lapachone and its diazoderivative: Relevance to their compared antimicrobial activities. Electrochemistry Communications, 2005, 7, 767-772.2.312
In Situ and Online Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based upon ..... 1.0 ..... 20 Microelectrochemistry: Concept, Theory, and Validation. ChemPhysChem, 2005, 6, 1581-1589.1.923What Makes for a Good Catalytic Cycle? A Theoretical Study of the Role of an Anionic Palladium(0)
249 Complex in the Cross-Coupling of an Aryl Halide with an Anionic Nucleophile. Organometallics, 2005,1.1218
24, 2319-2330.Rate and Mechanism of the Reaction of (E)-PhCHCH-CH(Ph)-OAc with Palladium(0) Complexes in Allylic

Effect of the leaving group and the allylic structure on the kinetics and thermodynamics of the
reaction of allylic carboxylates with palladium(0) complexes. Arkivoc, 2005, 2002, 92-101.

Relaxation of the electrical double layer after an electron transfer approached by Brownian dynamics simulation. Journal of Chemical Physics, 2004, 120, 9648-9655.
1.2

30

The Effects of Vesicular Volume on Secretion through the Fusion Pore in Exocytotic Release from PC12 Cells. Journal of Neuroscience, 2004, 24, 303-309.
1.7

Formation of anionic palladium(0) complexes ligated by the trifluoroacetate ion and their reactivity in oxidative addition. Journal of Organometallic Chemistry, 2004, 689, 3728-3734.
0.8

Imaging Concentration Profiles of Redox-Active Species with Nanometric Amperometric Probes: Effect
257 of Natural Convection on Transport at Microdisk Electrodes. Angewandte Chemie - International
$7.2 \quad 91$ Edition, 2004, 43, 1431-1435.

Decelerating Effect of Alkynes in the Oxidative Addition of Phenyl lodide to Palladium(0) Complexes in
258 Palladium-Catalyzed Multicomponent Reactions and Sonogashira Reactions. European Journal of Organic Chemistry, 2004, 2004, 366-371.
259 Active Anionic Zero-Valent Palladium Catalysts: Characterization by Density Functional Calculations. Chemistry - A European Journal, 2004, 10, 3072-3080.
1.7

Efficient quasi-conformal map for simulation of diffusion at disk microelectrodes. Electrochemistry
2.3

41

## 260 Communications, 2004, 6, 588-594.

261 Mechanism of the carbopalladation of alkynes by aryl-palladium complexes. Journal of Organometallic
Chemistry, 2004, 689, 4642-4646.

Simulation of diffusion at microring electrodes through conformal mapping. Journal of
Electroanalytical Chemistry, 2004, 564, 245-260.
Simulation of diffusion at microring electrodes through conformal mapping. Journal of
Electroanalytical Chemistry, 2004, 564, 245-260.
1.9

23

263 Using electrochemical coupling between parallel microbands for in situ monitoring of flow rates in
microfluidic channels. Journal of Electroanalytical Chemistry, 2004, 573, 333-343.
Mechanism of the palladium-catalysed electrosynthesis of diethyl carbonate from carbon monoxide and ethanol. Comptes Rendus Chimie, 2004, 7, 737-746.
$0.2 \quad 1$

First direct experimental evidence of migration contributions through monitoring of concentration
265 profiles at low supporting electrolyte concentration. Electrochemistry Communications, 2004, 6, 887-891.

Simulation of diffusionâ€"convection processes in microfluidic channels equipped with double band
266 microelectrode assemblies: approach through quasi-conformal mapping. Electrochemistry
2.3

25
Communications, 2004, 6, 1123-1130.
267 Remote Fluorescence Imaging of Dynamic Concentration Profiles with Micrometer Resolution Using a
Coherent Optical Fiber Bundle. Analytical Chemistry, 2004, 76, 7202-7210.
3.2

35

268 Editorial: Frontiers of Electrochemistry. ChemPhysChem, 2003, 4, 115-115.
1.0

3

[^0]1.0

44
271 Electron transfer induced topological reorganisations in copper complexes of N-tetrasubstitutedtetraazamacrocycles. Inorganica Chimica Acta, 2003, 356, 267-278.

The problem of the accuracy of electrochemical kinetic parameter determination for the ECE reaction mechanism. Journal of Electroanalytical Chemistry, 2003, 546, 109-121.

273 Effects of chemical environment on diffusivities within thin Nafion $\hat{A} ®$ films as monitored from
273 chronoamperometric responses of generatorâ€"collector double microband assemblies. Journal of
1.9 Electroanalytical Chemistry, 2003, 547, 151-161.

274 Simulation of the double hemicylinder generatorâ€"collector assembly through conformal mapping
1.9
technique. Journal of Electroanalytical Chemistry, 2003, 553, 49-61.

A new and powerful approach for simulation of diffusion at microelectrodes based on overlapping
275 sub-domains: application to chronoamperometry at the microdisk. Journal of Electroanalytical
1.9 Chemistry, 2003, 557, 75-90.

276 Theory of transient and steady-state ECL generation at double-hemicylinder assemblies using conformal mapping and simulations. Electrochemistry Communications, 2003, 5, 989-994.
2.3

17
277 Redox activation of dicarbonyl( $(1.5$-cyclopentadienyl)methyl iron within the cavity of $\hat{1}$ 2-cyclodextrin:
277 carbon monoxide insertion in ironâ $€^{\text {" methyl }}$ bond. Journal of Organometallic Chemistry, 2003, 668, 9-16.
Electrochemistry within molecules using ultrafast cyclic voltammetry. Comptes Rendus Chimie, 2003, 6, 99-115.
$0.8 \quad 12$
0.2

52279 Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum279 Electrodes of Nanometer Dimensions. Analytical Chemistry, 2003, 75, 3962-3971.3.2
280 Spatially Resolved Electrochemiluminescence on an Array of Electrode Tips. Analytical Chemistry,2003, 75, 4382-4388.
3.250
Mechanism of the Stille Reaction Catalyzed by Palladium Ligated to Arsine Ligand:â€\%o PhPdI(AsPh3)(DMF) Is
281 the Species Reacting with Vinylstannane in DMF. Journal of the American Chemical Society, 2003, 125, ..... 6.6 ..... 131 4212-4222.

Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell
282 monitoring of superoxide and nitric oxide production with microelectrodes. Carcinogenesis, 2003, 25,
1.3

57 509-515.
Structure and dynamics in colloidal and porous charged media. Journal of Physics Condensed Matter,$0.7 \quad 4$
2002, 14, 9207-9221.
Diffusional Cross-Talk between Paired Microband Electrodes Operating within a Thin Film:Â Theory for
284 Redox Couples with Unequal Diffusion Coefficients. Journal of Physical Chemistry B, 2002, 106, ..... 1.2
11565-11571.24
285 Synthesis and Investigation of New Macrocyclic Diphosphineâ^’Palladiu1.125Decelerating Effect of Alkenes in the Oxidative Addition of Phenyl lodide to Palladium(0) Complexes in1.157
Mechanistic investigation of the anodic oxidation of 3,4,5-trimethoxytoluene in acetonitrile. Journal
of Electroanalytical Chemistry, 2002, 537, 39-46.


290 Formation of Palladium(0) Complexes from $\mathrm{Pd}(\mathrm{OAc})$ 2and a Bidentate Phosphine Ligand (dppp) and Their
296 Ultrafast Voltammetry of Adsorbed Redox Active Dendrimers with Nanometric Resolution: AnElectrochemical Microtome. ChemPhysChem, 2001, 2, 130-134.
1.0Journal of Inorganic Chemistry, 2000, 2000, 1855-1859.

# Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: 

314 access to nanometric diffusion layers via transient electrochemistry. Journal of Electroanalytical
1.9

127 Chemistry, 2000, 486, 141-155.
Synthesis, characterization and X-ray crystal structure of cyclam derivatives. Part III. Formation and
electrochemically induced isomerization of copper complexes of
1,8-bis(N,N-dimethylcarbamoylmethyl)-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane. Comptes Rendus
Del'Academie Des Sciences - Seriesllc: Chemistry. 2000. $3,211-222$.

316 Mapping concentration profiles within the diffusion layer of an electrodePart I. Confocal resonance Raman microscopy. Electrochemistry Communications, 2000, 2, 235-239.
.
53
319 Ultrafast cyclic voltammetry: performing in the few megavolts per second range without ohmic drop.
2.3

99
Electrochemistry Communications, 2000, 2, 81-84.

Mechanism of the Nickel-Catalyzed Electrosynthesis of Ketones by Heterocoupling of Acyl and Benzyl
Halides. Monatshefte FÃ1/4r Chemie, 2000, 131, 1293-1304.
0.9

43

Microelectrodes. Definitions, characterization, and applications (Technical report). Pure and Applied
0.9

323
321 Chemistry, 2000, 72, 1483-92.

Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells. Biochimie, 2000, 82, 481-496.

325 Mechanistic and kinetic studies of palladium catalytic systems. Journal of Organometallic Chemistry, 1999, 576, 254-278.

Steady state voltammetry at low electrolyte/reactant concentration ratios: what it means and what it does not mean. Journal of Electroanalytical Chemistry, 1999, 463, 45-52.
1.9

24

| 329 | Electrosynthesis of Aromatic Aldehydes by Palladium-Catalyzed Carbonylation of Aryl lodides in the Presence of Formic Acid. European Journal of Organic Chemistry, 1999, 1999, 1471-1473. | 1.2 | 21 |
| :---: | :---: | :---: | :---: |
| 330 | Artificial Neurons with Logical Properties Based on Paired-Band Microelectrode Assemblies. Chemistry - A European Journal, 1999, 5, 456-465. | 1.7 | 34 |
| 331 | Evidence of the Reversible Formation of Cationic Ï€-Allylpalladium(II) Complexes in the Oxidative Addition of Allylic Acetates to Palladium(0) Complexes. Chemistry - A European Journal, 1999, 5, 466-473. | 1.7 | 74 |
| 332 | Time-Resolved Dynamics of the Vesicle Membrane During Individual Exocytotic Secretion Events, as Extracted from Amperometric Monitoring of Adrenaline Exocytosis from Chromaffin Cells. Chemistry - A European Journal, 1999, 5, 2151-2162. | 1.7 | 50 |
| 333 | Amplification of the Inflammatory Cellular Redox State by Human Immunodeficiency Virus Type 1-Immunosuppressive Tat and gp160 Proteins. Journal of Virology, 1999, 73, 1447-1452. | 1.5 | 40 |
| 334 | Reactivity of Transient 17- and 19-Electron Nickel(I)-Centred Radicals: CpNi(PR3) and $\mathrm{CpNi}(\mathrm{PR} 3) 2$. Redox Properties and Formation of the Zero-Valent Anionic Nickelate CpNi(PPh3)-.. Acta Chemica Scandinavica, 1999, 53, 920-927. | 0.7 | 8 |
| 335 | Role of dba in the reactivity of palladium(0) complexes generated in situ from mixtures of $\mathrm{Pd}(\mathrm{dba}) 2$ and phosphines. Coordination Chemistry Reviews, 1998, 178-180, 511-528. | 9.5 | 161 |
| 336 | Unexpected bell-shaped effect of the ligand on the rate of the oxidative addition to palladium( 0 ) complexes generated in situ from mixtures of $\mathrm{Pd}(\mathrm{dba}) 2$ and para-substituted triarylphosphines. Inorganica Chimica Acta, 1998, 273, 76-84. | 1.2 | 53 |
| 337 | Cyclovoltammetric studies on the reaction of dihydridotetrakis(triphenylphosphane)ruthenium(II) with methyl acrylate. CH -activation of methyl acrylate in the presence of $\mathrm{Ru}(0)(\mathrm{MA}) 2(\mathrm{PPh} 3) 2$. Journal of Organometallic Chemistry, 1998, 561, 175-179. | 0.8 | 2 |

338 Electron transfer catalysis of the hydrogenolysis of acyl dicarbonyl cyclopentadienyliron complexes

| 343 | Comparative Reactivity of Palladium(0) Complexes Generated in Situ in Mixtures of Triphenylphosphine or Tri-2-furylphosphine and Pd(dba)2. Organometallics, 1998, 17, 2958-2964. | 1.1 | 44 |
| :---: | :---: | :---: | :---: |
| 344 | Dynamics of the Electrochemical Behavior of Diimine Tricarbonyl Rhenium(I) Complexes in Strictly Aprotic Media. Journal of Physical Chemistry B, 1998, 102, 4759-4769. | 1.2 | 77 |
| 345 | Electron-Transfer-Induced Geometrical Isomerization of the Dinitrile <br> Complexescis-[Re(NCR)2(Ph2PCH2CH2PPh2)2][BF4] (R = Aryl, Alkyl):Â Rates, Mechanism, and Ligand Effects. Inorganic Chemistry, 1998, 37, 2344-2350. | 1.9 | 26 |

346 Investigation of the Mechanism of Palladium-Catalyzed Reactions by Electrochemistry. , 1998, , 379-382.
2

347 Ultramicroelectrodes: Their Use in Semi-Artificial Synapses. , 1998, , 409-412.
0

Evidence for an Equilibrium between Neutral and Cationic Arylpalladium(II) Complexes in DMF.
$348 \begin{aligned} & \text { Mechanism of the Reduction of Cationic Arylpalladium(II) Complexes.. Acta Chemica Scandinavica, 1998, }\end{aligned}$
52, 100-106.
Activation of the NADPH oxidase in human fibroblasts by mechanical intrusion of a single cell with an
ultramicroelectrode. Carcinogenesis, 1997, 18, 569-574.
Electrochemical and IR/UVâ^Vis Spectroelectrochemical Studies offac-[Mn(X)(CO)3(iPr-DAB)]n(n=0,X=)Tj ETQq000rgBT /Overlock
350 Variable Temperatures:Â Relation between Electrochemical and Photochemical Generation of
$1.1 \quad 53$ [Mn(CO)3(泣-diimine)].. Organometallics, 1997, 16, 4675-4685.
351 Divalent Palladium and Platinum Complexes Containing Rigid Bidentate Nitrogen Ligands and
351 Electrochemistry of the Palladium Complexes1. Organometallics, 1997, 16, 317-328.
1.1

53

Identification of the Effective Palladium(0) Catalytic Species Generatedin Situfrom Mixtures of
352 Pd(dba)2and Bidentate Phosphine Ligands. Determination of Their Rates and Mechanism in Oxidative
6.6

223
Addition. Journal of the American Chemical Society, 1997, 119, 5176-5185.

353 Phenylarsine oxide inhibits ex vivo HIV-1 expression. Biomedicine and Pharmacotherapy, 1997, 51, 430-438. 2.513

354 Synthesis of terminal-biradical compounds consisting of two N-oxyl groups connected with conjugated Ï€-systems. Tetrahedron Letters, 1997, 38, 7391-7394.
$0.7 \quad 17$
355 Mechanism of the electrochemical oxidation of zero valent palladium complexes. Journal of
$1.9 \quad 19$
Electroanalytical Chemistry, 1997, 422, 125-132.

Successive electron-transfers in low ionic strength solutions. Migrational flux coupling by
homogeneous electron transfer reactions. Journal of Electroanalytical Chemistry, 1997, 439, 173-182.
1.9

52

Structural Effects in the Reductive Activation of (Indenyl)RhL2Complexes: The Reduction of
1.7

24
$1.7-24$

Direct vs indirect route in the activation of aroylpalladium(II) complexes by electron transfer.
Electrochimica Acta, 1997, 42, 2143-2152.
2.6

9
Temporally resolved, independent stages of individual exocytotic secretion events. Biophysical
Journal, 1996, 70, 1061-1068.

| 361 | Mechanistic and synthetic aspects of a novel route to poly-p-xylylene (PPX) via nickel complex catalysed electropolymerisation of 1,4-bis(chloromethyl)benzene. Journal of the Chemical Society Perkin Transactions II, 1996, , 2447. | 0.9 | 13 |
| :---: | :---: | :---: | :---: |
| 362 | Electrogeneration of Triphenyltin Radical, Anion, and Cation. Electrochemical Initiation of Tin Hydride-Promoted Radical Chain Reactions. Journal of Organic Chemistry, 1996, 61, 9402-9408. | 1.7 | 13 |
| 363 | Interdigitated Array Electrode as an Alternative to the Rotated Ringâ"Disk Electrode for Determination of the Reaction Products of Dioxygen Reduction. Analytical Chemistry, 1996, 68, 2951-2958. | 3.2 | 41 |
| 364 | Equivalence between Microelectrodes of Different Shapes:Â Between Myth and Reality. Analytical Chemistry, 1996, 68, 4377-4388. | 3.2 | 86 |
| 365 | Synthesis, Structure, Reactivity, and Electrochemical Study of a <br> (2,2â€ -Biphosphinine)(1.5-pentamethylcyclo- pentadienyl)chlororuthenium(II) Complex. Organometallics, 1996, 15, 3267-3274. | 1.1 | 35 |
| 366 | Paired Electrosynthesis at the Femtoliter Scale:â€\%。Formation of 9,10-Anthracenedione from the Oxidation of Anthracene and Reduction of Dioxygen. Journal of the American Chemical Society, 1996, 118, 1482-1486. | 6.6 | 34 |
| 367 | Reactivity of the electrogenerated superoxide $\mathrm{O} 2 \hat{a}^{\wedge}$ anion with $\hat{I} \pm$, $\mathrm{i} \%$-diiodoperfluorobutane. Synthesis of 4-iodoperfluorobutanoic acid. Journal of Fluorine Chemistry, 1996, 77, 21-26. | 0.9 | 4 |
| 368 | Oxidative Addition of Aryl Halides to Transient Anionic Ãâ€Arylâ€"Palladium(0) Intermediatesâ€"Application to Palladiumâ€Catalyzed Reductive Coupling of Aryl Halides. Chemistry - A European Journal, 1996, 2, 957-966. | 1.7 | 78 |
| 369 | Rates and Mechanism of the Formation of Zerovalent Palladium Complexes from Mixtures of Pd(OAc)2 and Tertiary Phosphines and Their Reactivity in Oxidative Additions. Organometallics, 1995, 14, 1818-1826. | 1.1 | 321 |


| 379 | Disproportionation During Electrooxidation of Catecholamines at Carbon-Fiber Microelectrodes. Analytical Chemistry, 1994, 66, 3611-3617. | 3.2 | 110 |
| :---: | :---: | :---: | :---: |
| 380 | Rates and Mechanism of Oxidative Two-Electron-Transfer-Induced cis to trans Isomerization of the Nitrile Complex [ReCl(NCC6H4Me-4)(Ph2PCH2CH2PPh2)2]. Organometallics, 1994, 13, 3943-3951. | 1.1 | 27 |
| 381 | Reduction-Promoted Sulfur-Oxygen Bond Cleavage in a Nickel Sulfenate as a Model for the Activation of [NiFe] Hydrogenase. Journal of the American Chemical Society, 1994, 116, 9355-9356. | 6.6 | 51 |
| 382 | Electrosyntheses of disaccharides from phenyl or ethyl 1-thioglycosides. Carbohydrate Research, 1993, 244, 237-246. | 1.1 | 64 |
| 383 | Intramolecular charge transfer properties in the excited state of para-disubstituted biaryls. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 70, 39-49. | 2.0 | 30 |
| 384 | Intimate mechanism of oxidative addition to zerovalent palladium complexes in the presence of halide ions and its relevance to the mechanism of palladium-catalyzed nucleophilic substitutions. Journal of the American Chemical Society, 1993, 115, 9531-9541. | 6.6 | 248 |
| 385 | Correction. Analysis of Diffusional Broadening of Vesicular Packets of Catecholamines Released from Biological Cells during Exocytosis. Analytical Chemistry, 1993, 65, 2711-2712. | 3.2 | 0 |
| 386 | Theory of electrochemical luminescence at double band electrodes. An examination of "steady-state" diffusion at ultramicroelectrodes. Analytical Chemistry, 1993, 65, 2311-2316. | 3.2 | 35 |
| 387 | Rates and mechanisms of oxidative addition to zerovalent palladium complexes generated in situ from mixtures of PdO(dba)2 and triphenylphosphine. Organometallics, 1993, 12, 3168-3178. | 1.1 | 218 |

 Chemistry, 1992, 56, 249-258.

398 Electrosynthesis of unsymmetrical donor-acceptor polyaryls. Tetrahedron Letters, 1992, 33, 491-494.
0.7

17

> 399 New concept for a potentiostat for on-line ohmic drop compensation in cyclic voltammetry above 300 kV sâ' 1 . Journal of Electroanalytical Chemistry, 1992, 324,33-58. $400 \quad \begin{aligned} & \text { Standard oxidation potentials of methylbenzenes in acetonitrile. Journal of Electroanalytical } \\ & \text { Chemistry, 1992, 325, 239-246. }\end{aligned}$
1.9
1.9

Measurement of quadratic hyperpolarizabilities of unsymmetrical donor-acceptor bi- and polyaryls:
effect of size and torsion angle of aryl units. Chemical Physics, 1992, 160,467-475.
effect of size and torsion angle of aryl units. Chemical Physics, 1992, 160, 467-475.
0.9

Rates and mechanism of the reversible oxidative addition of $(Z)$ - and ( E )-1,2-dichloroethylene to low-ligated zerovalent palladium. Journal of the American Chemical Society, 1991, 113, 1670-1677.
6.6

59

$$
\begin{aligned}
& 403 \text { Theory and experiment for the collector-generator triple-band electrode. Analytical Chemistry, 1991, } \\
& \text { Activation of carbon dioxide by electron transfer and transition metals. Mechanism of } \\
& 404 \text { nickel-catalyzed electrocarboxylation of aromatic halides. Journal of the American Chemical Society, } \\
& \text { 1991, 113, 2819-2825. } \\
& 405 \text { Use of conformal maps to model the voltammetric response of collector-generator double-band } \\
& \text { Role and effects of halide ions on the rates and mechanisms of oxidative addition of iodobenzene to } \\
& 406 \text { low-ligated zerovalent palladium complexes } \mathrm{PdO}(\mathrm{PPh} 3) 2 \text {. Journal of the American Chemical Society, } \\
& \text { 1991, 113, 8375-8384. } \\
& 407 \text { Nonlinear optical properties of asymmetric polyphenyls: Efficiency versus transparency trade-off. } \\
& \text { Chemical Physics, 1991, 150, 117-123. }
\end{aligned}
$$

3.2

60
6.6

150
6.6

266
0.9

67

Mechanism of nickel-catalysed electron transfer activation of aromatic halides. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 306, 125-140.
0.3

43
Nickel-catalysed electrosynthesis of anti-inflammatory agents. III. A new electrolyser for organic
413 solvents; oxidation of metal powder as an alternative to sacrificial anodes. Journal of Applied
1.5
35 Electrochemistry, 1990, 20, 338-340.

Electrochemical initiation of radical chain addition of F-n butyl iodide to acetylenic alcohols. Cyclic voltammetric investigation of the mechanism. Journal of Fluorine Chemistry, 1990, 49, 247-261.
415
416

Efficient palladium-catalyzed synthesis of unsymmetrical donorâ€"acceptor biaryls and polyaryls.
417 Glycosylation Using a One-Electron-Transfer Homogeneous Reagent: A Novel and Efficient Synthesis

| 419 | Electron-transfer-catalyzed chelation of dithiocarbamate iron complexes <br> [Fe(.eta.5-C5R5)(.eta.1SC(S)NMe2)(CO)2] (R = H, Me) induced by oxidation. Organometallics, 1990, 9, 630-640. | 1.1 | 18 |
| :---: | :---: | :---: | :---: |
| 420 | Theory and experimental illustration of preparative electrochemistry using redox catalysis of electron transfer initiated radical chain reactions. Application to the cross-coupling between aryl halides and phenoxide ions. Journal of Organic Chemistry, 1990, 55, 6347-6356. | 1.7 | 32 |
| 421 | Electron paramagnetic resonance and electrochemical study of the oxidation chemistry of mononuclear and binuclear chromium carbonyl thiolates. Journal of the American Chemical Society, 1990, 112, 5789-5797. | 6.6 | 32 |

422 Mechanism of oxidative addition of palladium(0) with aromatic iodides in toluene, monitored atultramicroelectrodes. Organometallics, 1990, 9, 2276-2282.
423 Rates and Mechanisms of Electron Transfer/Nickel-Catalyzed Homocoupling and Carboxylation0.721Stabilization of bis(triphenylphosphine) palladium(0) by chloride ions. Electrochemical generation of424 highly reactive zerovalent palladium complexes. Journal of Organometallic Chemistry, 1989, 363,
0.8

Monosubstitution versus disubstitution in the SRN1 reaction of dihalobenzenes with sulfanions. The
426 role of the monosubstitution product and of its anion radical. Journal of Organic Chemistry, 1989, 54,
1.7

16 5688-5695.

$$
\begin{aligned}
& \text { Unexpected single electron transfer catalysed cyclisation of prenyl sulphone dimer. Evidence for } \\
& \text { radical anion coupling in the outer-sphere oxidation of prenyl sulphone carbanion. Journal of the } \\
& \text { Chemical Society Chemical Communications, 1989, } 1543 \text {. }
\end{aligned}
$$

$$
2.0 \quad 8
$$

428 Electrochemical reduction of iron pentacarbonyl revisited. Organometallics, 1988, 7, 2426-2428.
1.1

29

> Construction and use of paired and triple band microelectrodes in solutions of low ionic strength. Analytical Chemistry, 1988, 60, 2167-2169.
3.2

61

430 Rates and mechanism of biphenyl synthesis catalyzed by electrogenerated coordinatively unsaturated
Phenoxide ions as nucleophiles in SRN1 aromatic nucleophilic substitution. Journal of the Chemica
Society Chemical Communications, 1988, , 7-8.

Chelation of iron(II) dithiocarbamates: an electrocatalytic process with an endergonic cross
434 electron-transfer propagation step. Journal of the Chemical Society Chemical Communications, 1988, ,
2.0 200.

| 435 | Selective electrochemical and photochemical syntheses of unsymmetrical biaryls and their non-linear optical properties. Journal of the Chemical Society Chemical Communications, 1988, , 203. | 2.0 | 40 |
| :---: | :---: | :---: | :---: |
| 436 | Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience, 1988, 25, 513-523. | 1.1 | 415 |
| 437 | Electroreduction of carbonylmanganese(I) cations. Mechanism of ligand substitution and hydride formation via manganese(0) intermediates.. Organometallics, 1987, 6, 129-136. | 1.1 | 23 |
| 438 | Electrosynthesis of unsymmetrical biaryls using a SRN1 type reaction. Tetrahedron Letters, 1987, 28, 6171-6174. | 0.7 | 33 |
| 439 | Electrooxidation of metal cabonyl anions. Formation and reactivity of 17 -electron manganese(0) radicals. Journal of Organometallic Chemistry, 1987, 328, 133-154. | 0.8 | 26 |

$$
440 \quad \text { Manganese }(0) \text { radicals and the reduction of cationic carbonyl complexes: selectivity in the ligand }
$$ dissociation from 19-electron species. Inorganic Chemistry, 1986, 25, 4087-4097.

1.938

> Electrochemically induced aromatic substitution. The 2-nitropropane anion, a powerful nucleophile
> in SRN1 aromatic substitution. Journal of Organic Chemistry, 1986, 51, 3757-3761.
1.7

21

442 Reduction of metal carbonyls via electron transfer. Formation and chain decomposition of formylmetal intermediates. Organometallics, 1986, 5, 926-935.
1.1

48
Electrochemically catalyzed aromatic nucleophilic substitution. Reactivity of cyanide ions toward
aryl radicals in liquid ammonia. Journal of the American Chemical Society, 1986, 108, 4754-4760.
aryl radicals in liquid ammonia. Journal of the American Chemical Society, 1986, 108, 4754-4760.
$6.6 \quad 31$

Effects of restricted diffusion at ultramicroelectrodes in brain tissue. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 213, 31-42.
0.3

61

| 445 | Mechanism of the eletrochemical reduction of hydroxyiminoanthraquinones in DMF. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 207, 151-160. | 0.3 | 11 |
| :---: | :---: | :---: | :---: |
| 446 | Electrochemically induced SRN1 aromatic nucleophilic substitution. Absolute reactivities of phenyl derivatives in liquid ammonia. Journal of the American Chemical Society, 1985, 107, 4846-4853. | 6.6 | 47 |
| 447 | Kinetics and mechanism of self-protonation reactions in organic electrochemical processes. Journal of the American Chemical Society, 1985, 107, 1815-1824. | 6.6 | 154 |
| 448 | Nucleophile and aryl radical reactivity in SRN1 aromatic nucleophilic substitution reactions. Absolute and relative electrochemical determination. Journal of the American Chemical Society, 1985, 107, 3451-3459. | 6.6 | 78 |
| 449 | Kinetics and mechanism of aromatic oxidative substitutions via electron transfer. Application of Marcus theory to organic processes in the endergonic region. Journal of the American Chemical Society, 1984, 106, 3567-3577. | 6.6 | 94 |

Steric and electronic effects in ligand substitution of metal carbonyls. Rapid kinetics of labile
451

Rates and mechanism of proton transfer from transient carbon acids. The acidity of methylbenzene cation radicals. Journal of the American Chemical Society, 1984, 106, 7472-7482.

452 Unusual stabilization of formylmetal complexes. Organometallics, 1984, 3, 802-804.
1.1

17

| 453 | Electron-transfer-induced reactions. A novel approach based on electrochemical redox catalysis. Application to aromatic nucleophilic substitutions. Journal of the American Chemical Society, 1984, 106, 6318-6321. | 6.6 | 41 |
| :---: | :---: | :---: | :---: |
| 454 | Electron transfer from aromatic hydrocarbons and their .pi.-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials. Journal of the American Chemical Society, 1984, 106, 3968-3976. | 6.6 | 271 |
| 455 | Ligand exchange of metal carbonyls by chain mechanisms. Electrochemical kinetics of electron transfer catalysis. Journal of Organometallic Chemistry, 1983, 250, 345-371. | 0.8 | 39 |
| 456 | Electrosynthesis of hydridometal carbonyls. Rapid ligand substitution in transient MnO intermediates from the reduction of carbonylmanganese $(I)$ cations. Journal of the Chemical Society Chemical Communications, 1983, , 397. | 2.0 | 12 |
| 457 | Charge-transfer excitation of electron donor-acceptor complexes. Direct observation of ion pairs by time-resolved (picosecond) spectroscopy. Journal of the American Chemical Society, 1983, 105, 6167-6168. | 6.6 | 76 |
| 458 | Novel chain mechanism for the formyl-metal to hydrido-metal conversion. Free radical, photochemical and electrochemical methods of initiation. Journal of the American Chemical Society, 1983, 105, 6351-6352. | 6.6 | 27 |
| 459 | Electron transfer induced reactions. Electrochemically stimulated aromatic nucleophilic substitution in organic solvents. Journal of the American Chemical Society, 1982, 104, 817-826. | 6.6 | 50 |

Hydrogen atom transfer oxidation of primary and secondary alcoholates into aldehydes and ketones
460 by aromatic halides in liquid ammonia. A new electrochemically induceable reaction. Journal of the American Chemical Society, 1982, 104, 1979-1986.
461 Electron-transfer-induced reactions. Termination steps and efficiency of the chain process in SRN1 aromatic substitutions. Journal of the American Chemical Society, 1981, 103, 6930-6937.

Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. Journal of the American Chemical Society, 1981, 103, 5021-5023.


[^0]:    269
    Dynamics of Full Fusion During Vesicular Exocytotic Events: Release of Adrenaline by Chromaffin
    Cells. ChemPhysChem, 2003, 4, 147-154.

