
Christian Amatore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3621936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions. Accounts of Chemical Research, 2000, 33, 314-321.	7.6	1,043
2	Evidence of the formation of zerovalent palladium from Pd(OAc)2 and triphenylphosphine. Organometallics, 1992, 11, 3009-3013.	1.1	477
3	Mechanistic and kinetic studies of palladium catalytic systems. Journal of Organometallic Chemistry, 1999, 576, 254-278.	0.8	472
4	Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience, 1988, 25, 513-523.	1.1	415
5	Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. Journal of the American Chemical Society, 1981, 103, 5021-5023.	6.6	398
6	Ferrocene-Mediated Proton-Coupled Electron Transfer in a Series of Ferrocifen-Type Breast-Cancer Drug Candidates. Angewandte Chemie - International Edition, 2006, 45, 285-290.	7.2	373
7	Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chemical Reviews, 2008, 108, 2585-2621.	23.0	354
8	Mechanism of the Palladium-Catalyzed Homocoupling of Arylboronic Acids:  Key Involvement of a Palladium Peroxo Complex. Journal of the American Chemical Society, 2006, 128, 6829-6836.	6.6	345
9	Microelectrodes. Definitions, characterization, and applications (Technical report). Pure and Applied Chemistry, 2000, 72, 1483-92.	0.9	323
10	Rates and Mechanism of the Formation of Zerovalent Palladium Complexes from Mixtures of Pd(OAc)2 and Tertiary Phosphines and Their Reactivity in Oxidative Additions. Organometallics, 1995, 14, 1818-1826.	1.1	321
11	Kinetic Data for the Transmetalation/Reductive Elimination in Palladium atalyzed Suzuki–Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base. Chemistry - A European Journal, 2011, 17, 2492-2503.	1.7	318
12	Evidence for the Ligation of Palladium(0) Complexes by Acetate Ions: Consequences on the Mechanism of Their Oxidative Addition with Phenyl Iodide and PhPd(OAc)(PPh3)2 as Intermediate in the Heck Reaction. Organometallics, 1995, 14, 5605-5614.	1.1	275
13	Gold Nanoclusters and Graphene Nanocomposites for Drug Delivery and Imaging of Cancer Cells. Angewandte Chemie - International Edition, 2011, 50, 11644-11648.	7.2	275
14	Electron transfer from aromatic hydrocarbons and their .picomplexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials. Journal of the American Chemical Society, 1984, 106, 3968-3976.	6.6	271
15	Role and effects of halide ions on the rates and mechanisms of oxidative addition of iodobenzene to low-ligated zerovalent palladium complexes Pd0(PPh3)2. Journal of the American Chemical Society, 1991, 113, 8375-8384.	6.6	266
16	Intimate mechanism of oxidative addition to zerovalent palladium complexes in the presence of halide ions and its relevance to the mechanism of palladium-catalyzed nucleophilic substitutions. Journal of the American Chemical Society, 1993, 115, 9531-9541.	6.6	248
17	Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization. Macromolecular Chemistry and Physics, 2000, 201, 1625-1631.	1.1	224
18	Identification of the Effective Palladium(0) Catalytic Species Generatedin Situfrom Mixtures of Pd(dba)2and Bidentate Phosphine Ligands. Determination of Their Rates and Mechanism in Oxidative Addition. Journal of the American Chemical Society, 1997, 119, 5176-5185.	6.6	223

#	Article	IF	CITATIONS
19	Electrochemical Recycling of Benzoquinone in the Pd/Benzoquinone-Catalyzed Heck-Type Reactions from Arenes. Advanced Synthesis and Catalysis, 2007, 349, 292-296.	2.1	220
20	Rates and mechanisms of oxidative addition to zerovalent palladium complexes generated in situ from mixtures of Pd0(dba)2 and triphenylphosphine. Organometallics, 1993, 12, 3168-3178.	1.1	218
21	What Makes for a Good Catalytic Cycle? A Theoretical Study of the Role of an Anionic Palladium(0) Complex in the Cross-Coupling of an Aryl Halide with an Anionic Nucleophile. Organometallics, 2005, 24, 2319-2330.	1.1	218
22	Mechanism of oxidative addition of palladium(0) with aromatic iodides in toluene, monitored at ultramicroelectrodes. Organometallics, 1990, 9, 2276-2282.	1.1	208
23	New synthetic applications of water-soluble acetate Pd/TPPTS catalyst generated in Situ. evidence for a true Pd(0) species intermediate. Journal of Organic Chemistry, 1995, 60, 6829-6839.	1.7	206
24	Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11534-11539.	3.3	199
25	Mechanism of Palladiumâ€Catalyzed Suzuki–Miyaura Reactions: Multiple and Antagonistic Roles of Anionic "Bases―and Their Countercations. Chemistry - A European Journal, 2013, 19, 10082-10093.	1.7	195
26	Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chemical Communications, 2008, , 2612.	2.2	181
27	Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum Electrodes of Nanometer Dimensions. Analytical Chemistry, 2003, 75, 3962-3971.	3.2	178
28	Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2011, 2, 531-539.	3.7	172
29	Rates and mechanism of biphenyl synthesis catalyzed by electrogenerated coordinatively unsaturated nickel complexes. Organometallics, 1988, 7, 2203-2214.	1.1	166
30	In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters. Scientific Reports, 2013, 3, 1157.	1.6	166
31	Direct Electrochemical Measurements of Reactive Oxygen and Nitrogen Species in Nontransformed and Metastatic Human Breast Cells. Journal of the American Chemical Society, 2017, 139, 13055-13062.	6.6	162
32	Role of dba in the reactivity of palladium(0) complexes generated in situ from mixtures of Pd(dba)2 and phosphines. Coordination Chemistry Reviews, 1998, 178-180, 511-528.	9.5	161
33	Kinetics and mechanism of self-protonation reactions in organic electrochemical processes. Journal of the American Chemical Society, 1985, 107, 1815-1824.	6.6	154
34	Formation of Palladium(0) Complexes from Pd(OAc)2and a Bidentate Phosphine Ligand (dppp) and Their Reactivity in Oxidative Addition. Organometallics, 2001, 20, 3241-3249.	1.1	152
35	Activation of carbon dioxide by electron transfer and transition metals. Mechanism of nickel-catalyzed electrocarboxylation of aromatic halides. Journal of the American Chemical Society, 1991, 113, 2819-2825.	6.6	150
36	Temporally resolved, independent stages of individual exocytotic secretion events. Biophysical Journal, 1996, 70, 1061-1068.	0.2	149

#	Article	IF	CITATIONS
37	Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis. Analytical Chemistry, 1992, 64, 3077-3083.	3.2	148
38	Monitoring in Real Time with a Microelectrode the Release of Reactive Oxygen and Nitrogen Species by a Single Macrophage Stimulated by its Membrane Mechanical Depolarization. ChemBioChem, 2006, 7, 653-661.	1.3	147
39	Au–Pd Core–Shell Nanoparticles Catalyze Suzuki–Miyaura Reactions in Water through Pd Leaching. Angewandte Chemie - International Edition, 2011, 50, 12184-12188.	7.2	144
40	The real meaning of Nernst's steady diffusion layer concept under non-forced hydrodynamic conditions. A simple model based on Levich's seminal view of convection. Journal of Electroanalytical Chemistry, 2001, 500, 62-70.	1.9	140
41	Monitoring an oxidative stress mechanism at a single human fibroblast. Analytical Chemistry, 1995, 67, 3382-3390.	3.2	131
42	Mechanism of the Stille Reaction Catalyzed by Palladium Ligated to Arsine Ligand:  PhPdI(AsPh3)(DMF) Is the Species Reacting with Vinylstannane in DMF. Journal of the American Chemical Society, 2003, 125, 4212-4222.	6.6	131
43	Nanoelectrode for Amperometric Monitoring of Individual Vesicular Exocytosis Inside Single Synapses. Angewandte Chemie - International Edition, 2014, 53, 12456-12460.	7.2	130
44	Realâ€Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core–Shell Nanowire Electrodes. Angewandte Chemie - International Edition, 2017, 56, 12997-13000.	7.2	129
45	NHC apped Cyclodextrins (ICyDs): Insulated Metal Complexes, Commutable Multicoordination Sphere, and Cavityâ€Dependent Catalysis. Angewandte Chemie - International Edition, 2013, 52, 7213-7218.	7.2	128
46	Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: access to nanometric diffusion layers via transient electrochemistry. Journal of Electroanalytical Chemistry, 2000, 486, 141-155.	1.9	127
47	Precise Adjustment of Nanometric-Scale Diffusion Layers within a Redox Dendrimer Molecule by Ultrafast Cyclic Voltammetry: An Electrochemical Nanometric Microtome. Chemistry - A European Journal, 2001, 7, 2206-2226.	1.7	127
48	A [3]Ferrocenophane Polyphenol Showing a Remarkable Antiproliferative Activity on Breast and Prostate Cancer Cell Lines. Journal of Medicinal Chemistry, 2009, 52, 4964-4967.	2.9	125
49	<i>In Situ</i> Identification of Intermediates of Benzyl Chloride Reduction at a Silver Electrode by SERS Coupled with DFT Calculations. Journal of the American Chemical Society, 2010, 132, 9534-9536.	6.6	124
50	The Effects of Vesicular Volume on Secretion through the Fusion Pore in Exocytotic Release from PC12 Cells. Journal of Neuroscience, 2004, 24, 303-309.	1.7	123
51	Mechanistic Origin of Antagonist Effects of Usual Anionic Bases (OH ^{â⁻} ,) Tj ETQq1 1 0.784314 rgBT European Journal. 2012. 18. 6616-6625.	/Overlock 1.7	10 Tf 50 192 121
52	Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. Journal of Neuroscience, 2006, 26, 6997-7006.	1.7	119
53	Electrochemical Measurements of Reactive Oxygen and Nitrogen Species inside Single Phagolysosomes of Living Macrophages. Journal of the American Chemical Society, 2019, 141, 4564-4568.	6.6	117
54	Characterization of the Electrochemical Oxidation of Peroxynitrite: Relevance to Oxidative Stress Bursts Measured at the Single Cell Level. Chemistry - A European Journal, 2001, 7, 4171-4179.	1.7	116

#	Article	IF	CITATIONS
55	Do Molecular Conductances Correlate with Electrochemical Rate Constants? Experimental Insights. Journal of the American Chemical Society, 2011, 133, 7509-7516.	6.6	114
56	The Triple Role of Fluoride Ions in Palladium atalyzed Suzuki–Miyaura Reactions: Unprecedented Transmetalation from [ArPdFL ₂] Complexes. Angewandte Chemie - International Edition, 2012, 51, 1379-1382.	7.2	112
5 7	Disproportionation During Electrooxidation of Catecholamines at Carbon-Fiber Microelectrodes. Analytical Chemistry, 1994, 66, 3611-3617.	3.2	110
58	Carbon dioxide as a C1 building block. Mechanism of palladium-catalyzed carboxylation of aromatic halides. Journal of the American Chemical Society, 1992, 114, 7076-7085.	6.6	108
59	Active Anionic Zero-Valent Palladium Catalysts: Characterization by Density Functional Calculations. Chemistry - A European Journal, 2004, 10, 3072-3080.	1.7	107
60	Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Scientific Reports, 2014, 4, 4384.	1.6	102
61	Ultrafast cyclic voltammetry: performing in the few megavolts per second range without ohmic drop. Electrochemistry Communications, 2000, 2, 81-84.	2.3	99
62	Rates and mechanism of proton transfer from transient carbon acids. The acidity of methylbenzene cation radicals. Journal of the American Chemical Society, 1984, 106, 7472-7482.	6.6	98
63	When Voltammetry Reaches Nanoseconds. Analytical Chemistry, 2005, 77, 303 A-311 A.	3.2	97
64	Bridging the Gap between Electrochemical and Organometallic Activation: Benzyl Chloride Reduction at Silver Cathodes. Journal of the American Chemical Society, 2010, 132, 17199-17210.	6.6	96
65	Kinetics and mechanism of aromatic oxidative substitutions via electron transfer. Application of Marcus theory to organic processes in the endergonic region. Journal of the American Chemical Society, 1984, 106, 3567-3577.	6.6	94
66	Realâ€Time Amperometric Analysis of Reactive Oxygen and Nitrogen Species Released by Single Immunostimulated Macrophages. ChemBioChem, 2008, 9, 1472-1480.	1.3	92
67	Imaging Concentration Profiles of Redox-Active Species with Nanometric Amperometric Probes: Effect of Natural Convection on Transport at Microdisk Electrodes. Angewandte Chemie - International Edition, 2004, 43, 1431-1435.	7.2	91
68	Simultaneous Detection of Reactive Oxygen and Nitrogen Species Released by a Single Macrophage by Triple Potential-Step Chronoamperometry. Analytical Chemistry, 2010, 82, 1411-1419.	3.2	89
69	The evidence for open and closed exocytosis as the primary release mechanism. Quarterly Reviews of Biophysics, 2016, 49, e12.	2.4	88
70	Ultrafast Voltammetry of Adsorbed Redox Active Dendrimers with Nanometric Resolution: An Electrochemical Microtome. ChemPhysChem, 2001, 2, 130-134.	1.0	87
71	Steric and electronic effects in ligand substitution of metal carbonyls. Rapid kinetics of labile carbonylmanganese complexes by transient electrochemical techniques. Journal of the American Chemical Society, 1984, 106, 3771-3784.	6.6	86
72	Equivalence between Microelectrodes of Different Shapes:Â Between Myth and Reality. Analytical Chemistry, 1996, 68, 4377-4388.	3.2	86

#	Article	IF	CITATIONS
73	Correlation between Vesicle Quantal Size and Fusion Pore Release in Chromaffin Cell Exocytosis. Biophysical Journal, 2005, 88, 4411-4420.	0.2	86
74	Realâ€time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Selfâ€reconstructed Neuromuscular Junctions. Angewandte Chemie - International Edition, 2015, 54, 9313-9318.	7.2	85
75	Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 1. Steady-State Regimes at a Single Electrode. Analytical Chemistry, 2007, 79, 8502-8510.	3.2	84
76	The influence of phenolic hydroxy substitution on the electron transfer and anti-cancer properties of compounds based on the 2-ferrocenyl-1-phenyl-but-1-ene motif. Dalton Transactions, 2007, , 5073.	1.6	83
77	Pd(OAc) ₂ / <i>p</i> â€Benzoquinoneâ€Catalyzed Anaerobic Electrooxidative Homocoupling of Arylboronic Acids, Arylboronates and Aryltrifluoroborates in DMF and/or Water. European Journal of Organic Chemistry, 2008, 2008, 4567-4570.	1.2	83
78	Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 2. Electrochemical Regimes at Double Microband Assemblies under Steady State. Analytical Chemistry, 2008, 80, 9483-9490.	3.2	83
79	Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages. Angewandte Chemie - International Edition, 2019, 58, 7753-7756.	7.2	83
80	Glycosylation Using a One-Electron-Transfer Homogeneous Reagent: A Novel and Efficient Synthesis of β-Linked Disaccharides. Synlett, 1990, 1990, 572-574.	1.0	82
81	Coupling of Electrochemistry and Fluorescence Microscopy at Indium Tin Oxide Microelectrodes for the Analysis of Single Exocytotic Events. Angewandte Chemie - International Edition, 2006, 45, 4000-4003.	7.2	82
82	Regulation of Exocytosis in Chromaffin Cells by Trans-Insertion of Lysophosphatidylcholine and Arachidonic Acid into the Outer Leaflet of the Cell Membrane. ChemBioChem, 2006, 7, 1998-2003.	1.3	81
83	Difference between Ultramicroelectrodes and Microelectrodes: Influence of Natural Convection. Analytical Chemistry, 2010, 82, 6933-6939.	3.2	81
84	Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells. Lab on A Chip, 2007, 7, 233-238.	3.1	80
85	Electrochemical glycosylation using phenyl S-glycosides. Journal of the Chemical Society Chemical Communications, 1990, , 718.	2.0	79
86	Use of conformal maps to model the voltammetric response of collector-generator double-band electrodes. Analytical Chemistry, 1991, 63, 306-314.	3.2	79
87	Mechanism of the carbopalladation of alkynes by aryl-palladium complexes. Journal of Organometallic Chemistry, 2004, 689, 4642-4646.	0.8	79
88	In Situ Biosynthesis of Fluorescent Platinum Nanoclusters: Toward Self-Bioimaging-Guided Cancer Theranostics. ACS Applied Materials & Interfaces, 2015, 7, 18163-18169.	4.0	79
89	Nucleophile and aryl radical reactivity in SRN1 aromatic nucleophilic substitution reactions. Absolute and relative electrochemical determination. Journal of the American Chemical Society, 1985, 107, 3451-3459.	6.6	78
90	Oxidative Addition of Aryl Halides to Transient Anionic Ãâ€Aryl–Palladium(0) Intermediates—Application to Palladium atalyzed Reductive Coupling of Aryl Halides. Chemistry - A European Journal, 1996, 2, 957-966.	1.7	78

#	Article	IF	CITATIONS
91	Ultrafast Voltammetry for Probing Interfacial Electron Transfer in Molecular Wires. ChemPhysChem, 2007, 8, 1321-1329.	1.0	78
92	Dynamics of the Electrochemical Behavior of Diimine Tricarbonyl Rhenium(I) Complexes in Strictly Aprotic Media. Journal of Physical Chemistry B, 1998, 102, 4759-4769.	1.2	77
93	Charge-transfer excitation of electron donor-acceptor complexes. Direct observation of ion pairs by time-resolved (picosecond) spectroscopy. Journal of the American Chemical Society, 1983, 105, 6167-6168.	6.6	76
94	Analysis of individual biochemical events based on artificial synapses using ultramicroelectrodes: cellular oxidative burst. Faraday Discussions, 2000, 116, 319-333.	1.6	76
95	Reactivity and Antiproliferative Activity of Ferrocenyl–Tamoxifen Adducts with Cyclodextrins against Hormoneâ€Independent Breast ancer Cell Lines. Chemistry - A European Journal, 2008, 14, 8195-8203.	1.7	75
96	Deciphering the Activation Sequence of Ferrociphenol Anticancer Drug Candidates. Chemistry - A European Journal, 2012, 18, 6581-6587.	1.7	75
97	Evidence of the Reversible Formation of Cationic π-Allylpalladium(II) Complexes in the Oxidative Addition of Allylic Acetates to Palladium(0) Complexes. Chemistry - A European Journal, 1999, 5, 466-473.	1.7	74
98	Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells. Biochimie, 2000, 82, 481-496.	1.3	73
99	Reconstruction of Aperture Functions during Full Fusion in Vesicular Exocytosis of Neurotransmitters. ChemPhysChem, 2010, 11, 159-174.	1.0	73
100	Highly Sensitive Platinumâ€Black Coated Platinum Electrodes for Electrochemical Detection of Hydrogen Peroxide and Nitrite in Microchannel. Electroanalysis, 2013, 25, 895-902.	1.5	71
101	Rate and Mechanism of the Reaction of Alkenes with Aryl Palladium Complexes Ligated by a Bidentate P,P Ligand in Heck Reactions. Chemistry - A European Journal, 2007, 13, 2002-2011.	1.7	69
102	A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time. Angewandte Chemie - International Edition, 2017, 56, 9454-9458.	7.2	69
103	Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles. Angewandte Chemie - International Edition, 2011, 50, 5081-5084.	7.2	68
104	Nonlinear optical properties of asymmetric polyphenyls: Efficiency versus transparency trade-off. Chemical Physics, 1991, 150, 117-123.	0.9	67
105	Finding Out Egyptian Gods' Secret Using Analytical Chemistry: Biomedical Properties of Egyptian Black Makeup Revealed by Amperometry at Single Cells. Analytical Chemistry, 2010, 82, 457-460.	3.2	67
106	Nitric Oxide Release during Evoked Neuronal Activity in Cerebellum Slices: Detection with Platinized Carbon-Fiber Microelectrodes. ChemPhysChem, 2006, 7, 181-187.	1.0	66
107	The replacement of a phenol group by an aniline or acetanilide group enhances the cytotoxicity of 2-ferrocenyl-1,1-diphenyl-but-l-ene compounds against breast cancer cells. Journal of Organometallic Chemistry, 2009, 694, 895-901.	0.8	65
108	Electrosyntheses of disaccharides from phenyl or ethyl 1-thioglycosides. Carbohydrate Research, 1993, 244, 237-246.	1.1	64

#	Article	IF	CITATIONS
109	Using electrochemical coupling between parallel microbands for in situ monitoring of flow rates in microfluidic channels. Journal of Electroanalytical Chemistry, 2004, 573, 333-343.	1.9	64
110	On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes. Faraday Discussions, 2016, 193, 65-79.	1.6	62
111	Effects of restricted diffusion at ultramicroelectrodes in brain tissue. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 213, 31-42.	0.3	61
112	Construction and use of paired and triple band microelectrodes in solutions of low ionic strength. Analytical Chemistry, 1988, 60, 2167-2169.	3.2	61
113	Theory and experiment for the collector-generator triple-band electrode. Analytical Chemistry, 1991, 63, 1403-1408.	3.2	60
114	Mapping dynamic concentration profiles with micrometric resolution near an active microscopic surface by confocal resonance Raman microscopy. Application to diffusion near ultramicroelectrodes: first direct evidence for a conproportionation reaction. Journal of Electroanalytical Chemistry, 2000, 484, 1-17.	1.9	60
115	Electrochemically induced aromatic nucleophilic substitution in liquid ammonia. Competition with electron transfer. Journal of the American Chemical Society, 1979, 101, 6012-6020.	6.6	59
116	Rates and mechanism of the reversible oxidative addition of (Z)- and (E)-1,2-dichloroethylene to low-ligated zerovalent palladium. Journal of the American Chemical Society, 1991, 113, 1670-1677.	6.6	59
117	A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Principle. Electrochemistry Communications, 2010, 12, 1170-1173.	2.3	58
118	Efficient palladium-catalyzed synthesis of unsymmetrical donor—acceptor biaryls and polyaryls. Journal of Organometallic Chemistry, 1990, 390, 389-398.	0.8	57
119	New concept for a potentiostat for on-line ohmic drop compensation in cyclic voltammetry above 300 kV sâ°'1. Journal of Electroanalytical Chemistry, 1992, 324, 33-58.	1.9	57
120	Decelerating Effect of Alkenes in the Oxidative Addition of Phenyl Iodide to Palladium(0) Complexes in Heck Reactions. Organometallics, 2002, 21, 4540-4545.	1.1	57
121	Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes. Carcinogenesis, 2003, 25, 509-515.	1.3	57
122	Formation of anionic palladium(0) complexes ligated by the trifluoroacetate ion and their reactivity in oxidative addition. Journal of Organometallic Chemistry, 2004, 689, 3728-3734.	0.8	57
123	Anodic abatement of organic pollutants in water in micro reactors. Journal of Electroanalytical Chemistry, 2010, 638, 293-296.	1.9	56
124	Stabilization of bis(triphenylphosphine)palladium(0) by chloride ions. Electrochemical generation of highly reactive zerovalent palladium complexes. Journal of Organometallic Chemistry, 1989, 363, C41-C45.	0.8	55
125	Rates of the Oxidative Addition of Benzyl Halides to a Metallacyclic Palladium(II) Complex and of the Reductive Elimination from a Benzyl-Palladium(IV) Complex. Organometallics, 2008, 27, 4549-4554.	1.1	55
126	Electrochemically catalyzed aromatic nucleophilic substitution. Phenoxide ion as nucleophile. Journal of Organic Chemistry, 1988, 53, 1496-1504.	1.7	54

#	Article	IF	CITATIONS
127	Evidence for a Michaelisâ^'Menten Type Mechanism in the Electrocatalytic Oxidation of Mercaptopropionic Acid by anAmavadineModel. Journal of the American Chemical Society, 1996, 118, 7568-7573.	6.6	54
	Electrochemical and IR/UVâ^'Vis Spectroelectrochemical Studies offac-[Mn(X)(CO)3(iPr-DAB)]n(n= 0, X =) Tj	ETQq0 0 0 rg	BT /Overlock
128	Variable Temperatures:Â Relation between Electrochemical and Photochemical Generation of [Mn(CO)3(α-diimine)] Organometallics, 1997, 16, 4675-4685.	1.1	53
129	Divalent Palladium and Platinum Complexes Containing Rigid Bidentate Nitrogen Ligands and Electrochemistry of the Palladium Complexes1. Organometallics, 1997, 16, 317-328.	1.1	53
130	Unexpected bell-shaped effect of the ligand on the rate of the oxidative addition to palladium(0) complexes generated in situ from mixtures of Pd(dba)2 and para-substituted triarylphosphines. Inorganica Chimica Acta, 1998, 273, 76-84.	1.2	53
131	Mapping concentration profiles within the diffusion layer of an electrode. Electrochemistry Communications, 2000, 2, 353-358.	2.3	53
132	Electrochemistry within a Limited Number of Molecules: Delineating the Fringe Between Stochastic and Statistical Behavior. Angewandte Chemie - International Edition, 2003, 42, 4944-4947.	7.2	53
133	Activation of the NADPH oxidase in human fibroblasts by mechanical intrusion of a single cell with an ultramicroelectrode. Carcinogenesis, 1997, 18, 569-574.	1.3	52
134	Successive electron-transfers in low ionic strength solutions. Migrational flux coupling by homogeneous electron transfer reactions. Journal of Electroanalytical Chemistry, 1997, 439, 173-182.	1.9	52
135	Electrochemistry within molecules using ultrafast cyclic voltammetry. Comptes Rendus Chimie, 2003, 6, 99-115.	0.2	52
136	Decelerating Effect of Alkynes in the Oxidative Addition of Phenyl Iodide to Palladium(0) Complexes in Palladium-Catalyzed Multicomponent Reactions and Sonogashira Reactions. European Journal of Organic Chemistry, 2004, 2004, 366-371.	1.2	52
137	Reduction-Promoted Sulfur-Oxygen Bond Cleavage in a Nickel Sulfenate as a Model for the Activation of [NiFe] Hydrogenase. Journal of the American Chemical Society, 1994, 116, 9355-9356.	6.6	51
138	Uncovering the Missing Link between Molecular Electrochemistry and Electrocatalysis: Mechanism of the Reduction of Benzyl Chloride at Silver Cathodes. ChemElectroChem, 2014, 1, 227-240.	1.7	51
139	Electron transfer induced reactions. Electrochemically stimulated aromatic nucleophilic substitution in organic solvents. Journal of the American Chemical Society, 1982, 104, 817-826.	6.6	50
140	Time-Resolved Dynamics of the Vesicle Membrane During Individual Exocytotic Secretion Events, as Extracted from Amperometric Monitoring of Adrenaline Exocytosis from Chromaffin Cells. Chemistry - A European Journal, 1999, 5, 2151-2162.	1.7	50
141	Oxidative Addition of Allylic Carbonates to Palladium(0) Complexes: Reversibility and Isomerization. Chemistry - A European Journal, 2000, 6, 3372-3376.	1.7	50
142	Spatially Resolved Electrochemiluminescence on an Array of Electrode Tips. Analytical Chemistry, 2003, 75, 4382-4388.	3.2	50
143	Synthesis and Electrochemical Properties of Fullerene-Rich Nanoclusters Synthesized by Cobalt-Catalyzed Cyclotrimerization of Bis(aryl)alkyne Fullerodendrimers. Angewandte Chemie - International Edition, 2007, 46, 951-954.	7.2	50
144	Reversible Formation of a Cationic Palladium(II) Hydride [HPd(PPh ₃) ₂] ⁺ in the Oxidative Addition of Acetic or Formic Acid to Palladium(0) in DMF. European Journal of Inorganic Chemistry, 2000, 2000, 1855-1859.	1.0	49

#	Article	IF	CITATIONS
145	Rate and Mechanism of the Oxidative Addition of Phenyl Iodide to PdO Ligated by Triphenylarsine: Evidence for the Formation of a T-Shaped Complex [PhPdI(AsPh3)] and for the Decelerating Effect of CH2=CHâ [°] SnBu3 by Formation of [PdO(η2-CH2=CHâ [°] SnBu3)(AsPh3)2]. Chemistry - A European Journal, 2001, 7, 2134-2142.	1.7	49
146	CO2 as a C1-organic building block: Electrocarboxylation of aromatic ketones. A quantitative study of the effect of the concentration of substrate and of carbon dioxide on the selectivity of the process. Journal of Electroanalytical Chemistry, 2006, 592, 163-174.	1.9	49
147	Reduction of metal carbonyls via electron transfer. Formation and chain decomposition of formylmetal intermediates. Organometallics, 1986, 5, 926-935.	1.1	48
148	Migrational Effects on Second Waves of EE Mechanisms under Steady State or Quasi Steady State Regimes. Analytical Chemistry, 1995, 67, 2800-2811.	3.2	48
149	Electrochemically induced SRN1 aromatic nucleophilic substitution. Absolute reactivities of phenyl derivatives in liquid ammonia. Journal of the American Chemical Society, 1985, 107, 4846-4853.	6.6	47
150	Rate and Mechanism of the Heck Reactions of Arylpalladium Complexes Ligated by a Bidentate P,P Ligand with an Electron-Rich Alkene (Isobutyl Vinyl Ether). Organometallics, 2007, 26, 1757-1761.	1.1	47
151	Cyclic voltammetry at microelectrodes. Influence of natural convection on diffusion layers as characterized by in situ mapping of concentration profiles. Electrochemistry Communications, 2009, 11, 1269-1272.	2.3	47
152	Molecular Motion Inside an Adsorbed [5:1] Fullerene Hexaadduct Observed by Ultrafast Cyclic Voltammetry. Angewandte Chemie - International Edition, 2011, 50, 2364-2367.	7.2	47
153	Structural and electrochemical study of a 2,2'-biphosphinine. Organometallics, 1992, 11, 2475-2479.	1.1	46
154	Mapping Electrochemiluminescence as Generated at Double-Band Microelectrodes by Confocal Microscopy under Steady State. ChemPhysChem, 2006, 7, 1322-1327.	1.0	46
155	Striking Inflammation from Both Sides: Manganese(II) Pentaazamacrocyclic SOD Mimics Act Also as Nitric Oxide Dismutases: A Singleâ€Cell Study. Angewandte Chemie - International Edition, 2010, 49, 4228-4232.	7.2	46
156	Quantitative Analyses of ROS and RNS Production in Breast Cancer Cell Lines Incubated with Ferrocifens. ChemMedChem, 2014, 9, 1286-1293.	1.6	46
157	Mapping concentration profiles within the diffusion layer of an electrodePart I. Confocal resonance Raman microscopy. Electrochemistry Communications, 2000, 2, 235-239.	2.3	45
158	Electrochemical time-of-flight responses at double-band generator-collector devices under pulsed conditions. Journal of Electroanalytical Chemistry, 2006, 593, 194-202.	1.9	45
159	Ferrocenyl catechols: synthesis, oxidation chemistry and anti-proliferative effects on MDA-MB-231 breast cancer cells. Dalton Transactions, 2012, 41, 7537.	1.6	45
160	Comparative Reactivity of Palladium(0) Complexes Generated in Situ in Mixtures of Triphenylphosphine or Tri-2-furylphosphine and Pd(dba)2. Organometallics, 1998, 17, 2958-2964.	1.1	44
161	Importance of the Presence of Chloride Ions in the First Steps of Palladium-Catalyzed Nucleophilic Allylic Substitutions. European Journal of Inorganic Chemistry, 2001, 2001, 873-880.	1.0	44
162	Dynamics of Full Fusion During Vesicular Exocytotic Events: Release of Adrenaline by Chromaffin Cells. ChemPhysChem, 2003, 4, 147-154.	1.0	44

#	Article	IF	CITATIONS
163	Electrochemical Measurements of Optogenetically Stimulated Quantal Amine Release from Single Nerve Cell Varicosities in <i>Drosophila</i> Larvae. Angewandte Chemie - International Edition, 2015, 54, 13609-13612.	7.2	44
164	Quantitative Nanoâ€amperometric Measurement of Intravesicular Glutamate Content and its Subâ€Quantal Release by Living Neurons. Angewandte Chemie - International Edition, 2021, 60, 15803-15808.	7.2	44
165	Mechanism of nickel-catalysed electron transfer activation of aromatic halides. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 306, 125-140.	0.3	43
166	Mechanism of the Nickel-Catalyzed Electrosynthesis of Ketones by Heterocoupling of Acyl and Benzyl Halides. Monatshefte Für Chemie, 2000, 131, 1293-1304.	0.9	43
167	Relationship between amperometric pre-spike feet and secretion granule composition in Chromaffin cells: An overview. Biophysical Chemistry, 2007, 129, 181-189.	1.5	43
168	Electrochemical attachment of a conjugated amino–ferrocifen complex onto carbon and metal surfaces. Journal of Electroanalytical Chemistry, 2008, 619-620, 169-175.	1.9	43
169	Simple and Clear Evidence for Positive Feedback Limitation by Bipolar Behavior during Scanning Electrochemical Microscopy of Unbiased Conductors. Analytical Chemistry, 2011, 83, 4887-4893.	3.2	43
170	Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angewandte Chemie - International Edition, 2020, 59, 6711-6714.	7.2	43
171	Synthesis of Lipidated eNOS Peptides by Combining Enzymatic, Noble Metal- and Acid-Mediated Protecting Group Techniques with Solid Phase Peptide Synthesis and Fragment Condensation in Solution. Chemistry - A European Journal, 2001, 7, 2933-2939.	1.7	42
172	Evidence for an Equilibrium between Neutral and Cationic Arylpalladium(II) Complexes in DMF. Mechanism of the Reduction of Cationic Arylpalladium(II) Complexes Acta Chemica Scandinavica, 1998, 52, 100-106.	0.7	42
173	Electron-transfer-induced reactions. A novel approach based on electrochemical redox catalysis. Application to aromatic nucleophilic substitutions. Journal of the American Chemical Society, 1984, 106, 6318-6321.	6.6	41
174	Interdigitated Array Electrode as an Alternative to the Rotated Ringâ 'Disk Electrode for Determination of the Reaction Products of Dioxygen Reduction. Analytical Chemistry, 1996, 68, 2951-2958.	3.2	41
175	Adrenaline Release by Chromaffin Cells: Constrained Swelling of the Vesicle Matrix Leads to Full Fusion. Angewandte Chemie - International Edition, 2000, 39, 1952-1955.	7.2	41
176	Mapping concentration profiles within the diffusion layer of an electrodePart II. Potentiometric measurements with an ultramicroelectrode. Electrochemistry Communications, 2000, 2, 248-253.	2.3	41
177	Diffusion at Double Microband Electrodes Operated within a Thin Film Coating. Theory and Experimental Illustration. Journal of Physical Chemistry B, 2001, 105, 8694-8703.	1.2	41
178	Efficient quasi-conformal map for simulation of diffusion at disk microelectrodes. Electrochemistry Communications, 2004, 6, 588-594.	2.3	41
179	Selective electrochemical and photochemical syntheses of unsymmetrical biaryls and their non-linear optical properties. Journal of the Chemical Society Chemical Communications, 1988, , 203.	2.0	40
180	Is cyclic voltammetry above a few hundred kilovolts per second still cyclic voltammetry?. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 296, 335-358.	0.3	40

#	Article	IF	CITATIONS
181	Amplification of the Inflammatory Cellular Redox State by Human Immunodeficiency Virus Type 1-Immunosuppressive Tat and gp160 Proteins. Journal of Virology, 1999, 73, 1447-1452.	1.5	40
182	Homeostasis inside Single Activated Phagolysosomes: Quantitative and Selective Measurements of Submillisecond Dynamics of Reactive Oxygen and Nitrogen Species Production with a Nanoelectrochemical Sensor. Journal of the American Chemical Society, 2022, 144, 9723-9733.	6.6	40
183	Ligand exchange of metal carbonyls by chain mechanisms. Electrochemical kinetics of electron transfer catalysis. Journal of Organometallic Chemistry, 1983, 250, 345-371.	0.8	39
184	Use of 2,2'-Biphosphinines for the Stabilization of Reduced Transition Metal Species: Electrochemical Reduction of Bis(2,2'-biphosphinine)nickel(0). Inorganic Chemistry, 1995, 34, 11-12.	1.9	39
185	Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry. Biophysical Chemistry, 2007, 127, 165-171.	1.5	39
186	Theoretical Model of Neurotransmitter Release during In Vivo Vesicular Exocytosis Based on a Grainy Biphasic Nano-Structuration of Chromogranins within Dense Core Matrixes. Journal of the Electrochemical Society, 2016, 163, H3014-H3024.	1.3	39
187	Realâ€Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core–Shell Nanowire Electrodes. Angewandte Chemie, 2017, 129, 13177-13180.	1.6	39
188	Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chemical Science, 2020, 11, 778-785.	3.7	39
189	Manganese(0) radicals and the reduction of cationic carbonyl complexes: selectivity in the ligand dissociation from 19-electron species. Inorganic Chemistry, 1986, 25, 4087-4097.	1.9	38
190	Oxidative Addition of Palladium(0) Complexes Generated from [Pd(dba)2] and P-N Ligands: A Kinetic Investigation. Chemistry - A European Journal, 2000, 6, 1474-1482.	1.7	38
191	Rate and Mechanism of the Reversible Formation of Cationic (η3-Allyl)- palladium Complexes in the Oxidative Addition of Allylic Acetate to Palladium(0) Complexes Ligated by Diphosphanes. Chemistry - A European Journal, 2001, 7, 1273-1280.	1.7	38
192	Electrochemically Assisted Fabrication of Metal Atomic Wires and Molecular Junctions by MCBJ and STMâ€BJ Methods. ChemPhysChem, 2010, 11, 2745-2755.	1.0	38
193	The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules. Nanotechnology, 2010, 21, 274012.	1.3	38
194	General Concept of High-Performance Amperometric Detector for Microfluidic (Bio)Analytical Chips. Analytical Chemistry, 2008, 80, 4976-4985.	3.2	37
195	Numerical Simulation of Diffusion Processes at Recessed Disk Microelectrode Arrays Using the Quasi-Conformal Mapping Approach. Analytical Chemistry, 2009, 81, 4397-4405.	3.2	37
196	Evaluation of the anti-oxidant properties of a SOD-mimic Mn-complex in activated macrophages. Dalton Transactions, 2012, 41, 6399.	1.6	37
197	Electrochemical Detection of Nitric Oxide and Peroxynitrite Anion in Microchannels at Highly Sensitive Platinum-Black Coated Electrodes. Application to ROS and RNS Mixtures prior to Biological Investigations. Electrochimica Acta, 2014, 144, 111-118.	2.6	37
198	In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters. Biomaterials Science, 2016, 4, 1085-1091.	2.6	37

#	Article	IF	CITATIONS
199	Effect of the Leaving Group on the Rate and Mechanism of the Palladium-Catalyzed Isomerization of Cyclic Allylic Benzoates in Allylic Substitutions. European Journal of Organic Chemistry, 2006, 2006, 1185-1192.	1.2	36
200	Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells. Biophysical Chemistry, 2009, 143, 124-131.	1.5	36
201	Hydrogen atom transfer oxidation of primary and secondary alcoholates into aldehydes and ketones by aromatic halides in liquid ammonia. A new electrochemically induceable reaction. Journal of the American Chemical Society, 1982, 104, 1979-1986.	6.6	35
202	Nickel-catalysed electrosynthesis of anti-inflammatory agents. III. A new electrolyser for organic solvents; oxidation of metal powder as an alternative to sacrificial anodes. Journal of Applied Electrochemistry, 1990, 20, 338-340.	1.5	35
203	Theory of electrochemical luminescence at double band electrodes. An examination of "steady-state" diffusion at ultramicroelectrodes. Analytical Chemistry, 1993, 65, 2311-2316.	3.2	35
204	Radical Tandem Cyclizations by Anodic Decarboxylation of Carboxylic Acids. Synthesis, 1995, 1995, 1432-1444.	1.2	35
205	Synthesis, Structure, Reactivity, and Electrochemical Study of a (2,2â€~-Biphosphinine)(η5-pentamethylcyclo- pentadienyl)chlororuthenium(II) Complex. Organometallics, 1996, 15, 3267-3274.	1.1	35
206	Monitoring Concentration Profiles In Situ with an Ultramicroelectrode Probe. Electroanalysis, 2001, 13, 646-652.	1.5	35
207	Remote Fluorescence Imaging of Dynamic Concentration Profiles with Micrometer Resolution Using a Coherent Optical Fiber Bundle. Analytical Chemistry, 2004, 76, 7202-7210.	3.2	35
208	Nanoelectrodes for intracellular measurements of reactive oxygen and nitrogen species in single living cells. Current Opinion in Electrochemistry, 2020, 22, 44-50.	2.5	35
209	Electron-transfer-induced reactions. Termination steps and efficiency of the chain process in SRN1 aromatic substitutions. Journal of the American Chemical Society, 1981, 103, 6930-6937.	6.6	34
210	Paired Electrosynthesis at the Femtoliter Scale:  Formation of 9,10-Anthracenedione from the Oxidation of Anthracene and Reduction of Dioxygen. Journal of the American Chemical Society, 1996, 118, 1482-1486.	6.6	34
211	Mechanistic investigation of the anodic oxidation of p-methoxytoluene in dry and wet acetonitrile. Journal of Electroanalytical Chemistry, 1999, 464, 85-92.	1.9	34
212	Artificial Neurons with Logical Properties Based on Paired-Band Microelectrode Assemblies. Chemistry - A European Journal, 1999, 5, 456-465.	1.7	34
213	Synthesis, X-ray Structure, Electrochemical, and EPR Studies of a Pentacoordinated Mn(II) Tetramethylcyclam Complex. Inorganic Chemistry, 2001, 40, 5722-5726.	1.9	34
214	A new and powerful approach for simulation of diffusion at microelectrodes based on overlapping sub-domains: application to chronoamperometry at the microdisk. Journal of Electroanalytical Chemistry, 2003, 557, 75-90.	1.9	34
215	A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Application to model mechanisms. Electrochemistry Communications, 2010, 12, 1165-1169.	2.3	34
216	Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophysical Chemistry, 2012, 162, 14-21.	1.5	34

#	Article	IF	CITATIONS
217	A New Approach for the Simulation of Electrochemiluminescence (ECL). ChemPhysChem, 2013, 14, 2237-2250.	1.0	34
218	Electrosynthesis of unsymmetrical biaryls using a SRN1 type reaction. Tetrahedron Letters, 1987, 28, 6171-6174.	0.7	33
219	About potential measurements in steady state voltammetry at low electrolyte/analyte concentration ratios. Journal of Electroanalytical Chemistry, 1998, 443, 137-148.	1.9	33
220	Simulation of the double hemicylinder generator–collector assembly through conformal mapping technique. Journal of Electroanalytical Chemistry, 2003, 553, 49-61.	1.9	33
221	Rate and Mechanism of the Reaction of (E)-PhCHCH-CH(Ph)-OAc with Palladium(0) Complexes in Allylic Substitutions. Organometallics, 2005, 24, 1569-1577.	1.1	33
222	Alteration of diffusional transport by migration and natural convection. Theoretical and direct experimental evidences upon monitoring steady-state concentration profiles at planar electrodes. Journal of Electroanalytical Chemistry, 2007, 601, 17-28.	1.9	33
223	Pd-Catalyzed Homocoupling Reaction of Arylboronic Acid: Insights from Density Functional Theory. Journal of Physical Chemistry A, 2008, 112, 12896-12903.	1.1	33
224	Vesicular release of neurotransmitters: converting amperometric measurements into size, dynamics and energetics of initial fusion pores. Faraday Discussions, 2013, 164, 33.	1.6	33
225	Evaluation of photosynthetic electrons derivation by exogenous redox mediators. Biophysical Chemistry, 2015, 205, 1-8.	1.5	33
226	Electrochemical Monitoring of ROS/RNS Homeostasis Within Individual Phagolysosomes Inside Single Macrophages. Angewandte Chemie, 2019, 131, 7835-7838.	1.6	33
227	Theory and experimental illustration of preparative electrochemistry using redox catalysis of electron transfer initiated radical chain reactions. Application to the cross-coupling between aryl halides and phenoxide ions. Journal of Organic Chemistry, 1990, 55, 6347-6356.	1.7	32
228	Electron paramagnetic resonance and electrochemical study of the oxidation chemistry of mononuclear and binuclear chromium carbonyl thiolates. Journal of the American Chemical Society, 1990, 112, 5789-5797.	6.6	32
229	Direct Electroanalytical Method for Alternative Assessment of Global Antioxidant Capacity Using Microchannel Electrodes. Analytical Chemistry, 2013, 85, 9057-9063.	3.2	32
230	Synthesis, Characterization, and Biological Properties of Osmiumâ€Based Tamoxifen Derivatives – Comparison with Their Homologues in the Iron and Ruthenium Series. European Journal of Inorganic Chemistry, 2015, 2015, 4217-4226.	1.0	32
231	Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted–MCBJ. Nano Research, 2016, 9, 560-570.	5.8	32
232	Electrochemically catalyzed aromatic nucleophilic substitution. Reactivity of cyanide ions toward aryl radicals in liquid ammonia. Journal of the American Chemical Society, 1986, 108, 4754-4760.	6.6	31
233	Vesicular Exocytosis under Hypotonic Conditions Shows Two Distinct Populations of Dense Core Vesicles in Bovine Chromaffin Cells. ChemPhysChem, 2007, 8, 578-585.	1.0	31
234	Downstream Simultaneous Electrochemical Detection of Primary Reactive Oxygen and Nitrogen Species Released by Cell Populations in an Integrated Microfluidic Device. Analytical Chemistry, 2018, 90, 9386-9394.	3.2	31

#	Article	IF	CITATIONS
235	Intramolecular charge transfer properties in the excited state of para-disubstituted biaryls. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 70, 39-49.	2.0	30
236	Relaxation of the electrical double layer after an electron transfer approached by Brownian dynamics simulation. Journal of Chemical Physics, 2004, 120, 9648-9655.	1.2	30
237	Mass Transport at Microband Electrodes: Transient, Quasi‣teady‣tate, and Convective Regimes. ChemPhysChem, 2012, 13, 1562-1568.	1.0	30
238	Three Roles for the Fluoride Ion in Palladium atalyzed Hiyama Reactions: Transmetalation of [ArPdFL ₂] by Ar′Si(OR) ₃ . Angewandte Chemie - International Edition, 2014, 53, 6982-6985.	7.2	30
239	Recent advances in Electrochemical Detection of Exocytosis. Electrochimica Acta, 2014, 140, 457-466.	2.6	30
240	Electrochemical reduction of iron pentacarbonyl revisited. Organometallics, 1988, 7, 2426-2428.	1.1	29
241	Palladium(0)-Catalyzed Allylic Aminations:Â Kinetics and Mechanism of the Reaction of Secondary Amines with Cationic [(η3-allyl)PdL2]+Complexesâ€. Organometallics, 2007, 26, 1875-1880.	1.1	29
242	Theoretical Analysis of Microscopic Ohmic Drop Effects on Steady-State and Transient Voltammetry at the Disk Microelectrode: A Quasi-Conformal Mapping Modeling and Simulation. Analytical Chemistry, 2008, 80, 7947-7956.	3.2	29
243	In situ electrochemical monitoring of reactive oxygen and nitrogen species released by single MG63 osteosarcoma cell submitted to a mechanical stress. Physical Chemistry Chemical Physics, 2010, 12, 10048.	1.3	29
244	New theoretical insights into the competitive roles of electron transfers involving adsorbed and homogeneous phases. Journal of Electroanalytical Chemistry, 2013, 688, 320-327.	1.9	29
245	Theoretical Investigation of Generator–Collector Microwell Arrays for Improving Electroanalytical Selectivity: Application to Selective Dopamine Detection in the Presence of Ascorbic Acid. ChemPhysChem, 2013, 14, 1887-1898.	1.0	29
246	Realâ€Time Monitoring of Auxin Vesicular Exocytotic Efflux from Single Plant Protoplasts by Amperometry at Microelectrodes Decorated with Nanowires. Angewandte Chemie - International Edition, 2014, 53, 2643-2647.	7.2	29
247	Validating a Central Approximation in Theories of Regular Electrode Electrochemical Arrays of Various Common Geometries. Electroanalysis, 2015, 27, 980-991.	1.5	29
248	Theory and Simulation for Optimising Electrogenerated Chemiluminescence from Tris(2,2′â€bipyridine)â€ruthenium(II)â€Doped Silica Nanoparticles and Tripropylamine. ChemElectroChem, 20 4, 1719-1730.	17 , .7	29
249	Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters Neurotransmitter Release. Angewandte Chemie - International Edition, 2020, 59, 3083-3087.	7.2	29
250	Angeli's Salt (Na2N2O3) is a Precursor of HNO and NO: a Voltammetric Study of the Reactive Intermediates Released by Angeli's Salt Decomposition. ChemMedChem, 2007, 2, 898-903.	1.6	28
251	A density functional theory approach to mushroom-like platinum clusters on palladium-shell over Au core nanoparticles for high electrocatalytic activity. Physical Chemistry Chemical Physics, 2011, 13, 5441.	1.3	28
252	Novel chain mechanism for the formyl-metal to hydrido-metal conversion. Free radical, photochemical and electrochemical methods of initiation. Journal of the American Chemical Society, 1983, 105, 6351-6352.	6.6	27

#	Article	lF	CITATIONS
253	Mechanism of nickel-catalysed electron transfer activation of aromatic halides. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 306, 141-156.	0.3	27
254	Rates and Mechanism of Oxidative Two-Electron-Transfer-Induced cis to trans Isomerization of the Nitrile Complex [ReCl(NCC6H4Me-4)(Ph2PCH2CH2PPh2)2]. Organometallics, 1994, 13, 3943-3951.	1.1	27
255	Construction of optimal quasi-conformal mappings for the 2D numerical simulation of diffusion at microelectrodes Journal of Electroanalytical Chemistry, 2006, 597, 77-85.	1.9	27
256	Construction of optimal quasi-conformal mappings for the 2D-numerical simulation of diffusion at microelectrodes. Part 1: Principle of the method and its application to the inlaid disk microelectrode. Journal of Electroanalytical Chemistry, 2006, 597, 69-76.	1.9	27
257	On the formation of Pd(II) complexes of Trost modular ligand involving N–H activation or P,O coordination in Pd-catalyzed allylic alkylations. Journal of Organometallic Chemistry, 2007, 692, 1457-1464.	0.8	27
258	Theory and Experiments of Transport at Channel Microband Electrodes Under Laminar Flow. 3. Electrochemical Detection at Electrode Arrays under Steady State. Analytical Chemistry, 2010, 82, 2434-2440.	3.2	27
259	Importance of Correct Prediction of Initial Concentrations in Voltammetric Scans: Contrasting Roles of Thermodynamics, Kinetics, and Natural Convection. Analytical Chemistry, 2012, 84, 2792-2798.	3.2	27
260	Electrooxidation of metal cabonyl anions. Formation and reactivity of 17-electron manganese(0) radicals. Journal of Organometallic Chemistry, 1987, 328, 133-154.	0.8	26
261	Preparative scale synthesis ofO-glycosides and of a disaccharide by electrochemical oxidation of phenylS-glycosides. Journal of Applied Electrochemistry, 1994, 24, 725-729.	1.5	26
262	Rate and Mechanism of the Reductions of Iron Pentacarbonyl and Chromium Hexacarbonyl to Their Metalate Complexes. Organometallics, 1995, 14, 640-649.	1.1	26
263	Electron-Transfer-Induced Geometrical Isomerization of the Dinitrile Complexescis-[Re(NCR)2(Ph2PCH2CH2PPh2)2][BF4] (R = Aryl, Alkyl):Â Rates, Mechanism, and Ligand Effects. Inorganic Chemistry, 1998, 37, 2344-2350.	1.9	26
264	The problem of the accuracy of electrochemical kinetic parameter determination for the ECE reaction mechanism. Journal of Electroanalytical Chemistry, 2003, 546, 109-121.	1.9	26
265	Vitamin C stimulates or attenuates reactive oxygen and nitrogen species (ROS, RNS) production depending on cell state: Quantitative amperometric measurements of oxidative bursts at PLB-985 and RAW 264.7 cells at the single cell level. Journal of Electroanalytical Chemistry, 2008, 615, 34-44.	1.9	26
266	Ex vivo Activities of βâ€Lapachone and αâ€Lapachone on Macrophages: A Quantitative Pharmacological Analysis Based on Amperometric Monitoring of Oxidative Bursts by Single Cells. ChemBioChem, 2009, 10, 528-538.	1.3	26
267	Invariance of Exocytotic Events Detected by Amperometry as a Function of the Carbon Fiber Microelectrode Diameter. Analytical Chemistry, 2009, 81, 3087-3093.	3.2	26
268	Simultaneous and multisite tumor rapid-target bioimaging through in vivo biosynthesis of fluorescent gold nanoclusters. RSC Advances, 2014, 4, 37790-37795.	1.7	26
269	Electrochemically Driven Supramolecular Interaction of Quinones and Ferrocifens: An Example of Redox Activation of Bioactive Compounds. Current Topics in Medicinal Chemistry, 2015, 15, 136-162.	1.0	26
270	Synthesis of perfluoroalkyl carboxylic acids by reaction of perfluoroalkyl iodides with electrogenerated superoxide ion. Journal of Fluorine Chemistry, 1991, 51, 357-379.	0.9	25

#	Article	IF	CITATIONS
271	Potential measurements in steady state voltammetry at low electrolyte/analyte concentration ratios. Role of convection on ohmic drop: a simplified model. Journal of Electroanalytical Chemistry, 1998, 446, 91-105.	1.9	25
272	Synthesis and Investigation of New Macrocyclic Diphosphineâ^'Palladium(0) Complexes Based on the Barbiturate Binding Receptor. Organometallics, 2002, 21, 5243-5253.	1.1	25
273	Simulation of diffusion–convection processes in microfluidic channels equipped with double band microelectrode assemblies: approach through quasi-conformal mapping. Electrochemistry Communications, 2004, 6, 1123-1130.	2.3	25
274	Electrochemically Driven Release of Picomole Amounts of Calcium Ions with Temporal and Spatial Resolution. Angewandte Chemie - International Edition, 2008, 47, 5211-5214.	7.2	25
275	Synthesis, Characterization, and Antiproliferative Activities of Novel Ferrocenophanic Suberamides against Human Triple-Negative MDA-MB-231 and Hormone-Dependent MCF-7 Breast Cancer Cells. Organometallics, 2013, 32, 5926-5934.	1.1	25
276	Vesicular exocytosis and microdevices $\hat{a} \in $ microelectrode arrays. Analyst, The, 2015, 140, 3687-3695.	1.7	25
277	Structural Effects in the Reductive Activation of (Indenyl)RhL2Complexes: The Reduction of [Rh(η5-C9H7)(η4-cod)]. Chemistry - A European Journal, 1997, 3, 279-285.	1.7	24
278	Steady state voltammetry at low electrolyte/reactant concentration ratios: what it means and what it does not mean. Journal of Electroanalytical Chemistry, 1999, 463, 45-52.	1.9	24
279	Diffusional Cross-Talk between Paired Microband Electrodes Operating within a Thin Film:Â Theory for Redox Couples with Unequal Diffusion Coefficients. Journal of Physical Chemistry B, 2002, 106, 11565-11571.	1.2	24
280	Kinetic Data on the Synergetic Role of Amines and Water in the Reduction of Phosphineâ€Ligated Palladium(II) to Palladium(0). European Journal of Organic Chemistry, 2014, 2014, 4709-4713.	1.2	24
281	Molecular electrochemistry and electrocatalysis: a dynamic view. Molecular Physics, 2014, 112, 1273-1283.	0.8	24
282	â€~Full fusion' is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160684.	1.0	24
283	Electroreduction of carbonylmanganese(I) cations. Mechanism of ligand substitution and hydride formation via manganese(0) intermediates Organometallics, 1987, 6, 129-136.	1.1	23
284	Kinetics of the Oxidative Addition ofortho-Substituted Aryl Halides to Palladium(0) Complexes. European Journal of Inorganic Chemistry, 2001, 2001, 2675-2681.	1.0	23
285	Simulation of diffusion at microring electrodes through conformal mapping. Journal of Electroanalytical Chemistry, 2004, 564, 245-260.	1.9	23
286	Diffusion within nanometric and micrometric spherical-type domains limited by nanometric ring or pore active interfaces. Part 1: conformal mapping approach. Journal of Electroanalytical Chemistry, 2005, 575, 103-123.	1.9	23
287	Electrochemical Storage of Atomic Hydrogen on Single Layer Graphene. Journal of the American Chemical Society, 2021, 143, 18419-18425.	6.6	23
288	Palladium/Benzoquinone-Catalyzed Electrochemical Oxidation of Alcohols Under Anaerobic Conditions. Synlett, 2007, 2007, 2173-2178.	1.0	22

#	Article	IF	CITATIONS
289	Electrochemically induced aromatic substitution. The 2-nitropropane anion, a powerful nucleophile in SRN1 aromatic substitution. Journal of Organic Chemistry, 1986, 51, 3757-3761.	1.7	21
290	Phenoxide ions as nucleophiles in SRN1 aromatic nucleophilic substitution. Journal of the Chemical Society Chemical Communications, 1988, , 7-8.	2.0	21
291	Electrosynthesis of Aromatic Aldehydes by Palladium-Catalyzed Carbonylation of Aryl Iodides in the Presence of Formic Acid. European Journal of Organic Chemistry, 1999, 1999, 1471-1473.	1.2	21
292	Direct Monitoring of Ultrafast Redox Commutation at the Nanosecond and Nanometer Scales by Ultrafast Voltammetry: From Molecular Wires to Cation Releasing Systems. Israel Journal of Chemistry, 2008, 48, 203-214.	1.0	21
293	Exploring the first steps of an electrochemically-triggered controlled polymerization sequence: Activation of alkyl- and benzyl halide initiators by an electrogenerated FellSalen complex. Journal of Electroanalytical Chemistry, 2009, 633, 99-105.	1.9	21
294	Synthesis and Electrochemical Study of an Original Copper(II) apped Salen–Cyclodextrin Complex. European Journal of Inorganic Chemistry, 2010, 2010, 4720-4727.	1.0	21
295	A Novel Approach to the Simulation of Electrochemical Mechanisms Involving Acute Reaction Fronts at Disk and Band Microelectrodes. ChemPhysChem, 2012, 13, 845-859.	1.0	21
296	Copper–amyloid-β complex may catalyze peroxynitrite production in brain: evidence from molecular modeling. Physical Chemistry Chemical Physics, 2014, 16, 10169-10174.	1.3	21
297	Amperometric detection of vesicular exocytosis from BON cells at carbon fiber microelectrodes. Electrochimica Acta, 2014, 126, 74-80.	2.6	21
298	Quinone-based molecular electrochemistry and their contributions to medicinal chemistry: A look atÂthe present and future. Current Opinion in Electrochemistry, 2020, 24, 79-87.	2.5	21
299	Rates and Mechanisms of Electron Transfer/Nickel-Catalyzed Homocoupling and Carboxylation Reactions. An Electrochemical Approach Acta Chemica Scandinavica, 1990, 44, 755-764.	0.7	21
300	Measurement of quadratic hyperpolarizabilities of unsymmetrical donor-acceptor bi- and polyaryls: effect of size and torsion angle of aryl units. Chemical Physics, 1992, 160, 467-475.	0.9	20
301	Formation of Anionic PdX3(PPh3)â^' Complexes by Reaction of Halide Ions with PdX2(PPh3)2. European Journal of Inorganic Chemistry, 1999, 1999, 1081-1085.	1.0	20
302	Micrometrically Controlled Surface Modification of Teflon [®] by Redox Catalysis: Electrochemical Coupling between Teflon [®] and a Gold Band Ultramicroelectrode. Chemistry - A European Journal, 2000, 6, 820-835.	1.7	20
303	Electron transfer induced topological reorganisations in copper complexes of N-tetrasubstituted tetraazamacrocycles. Inorganica Chimica Acta, 2003, 356, 267-278.	1.2	20
304	In Situ and Online Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based upon Microelectrochemistry: Concept, Theory, and Validation. ChemPhysChem, 2005, 6, 1581-1589.	1.0	20
305	Further insights into hydrophobic interactions between ferrocenyl-tamoxifen drugs and non-polar molecular architectures at electrode surfaces. Journal of Electroanalytical Chemistry, 2009, 635, 13-19.	1.9	20
306	Theoretical study of the EE reaction mechanism with comproportionation and different diffusivities of reactants. Electrochemistry Communications, 2010, 12, 1378-1382.	2.3	20

#	Article	IF	CITATIONS
307	Electrochemical Conversion of Dichloroacetic Acid to Chloroacetic Acid in Conventional Cell and in Two Microfluidic Reactors. ChemElectroChem, 2014, 1, 116-124.	1.7	20
308	Strategy for Increasing the Electrode Density of Microelectrode Arrays by Utilizing Bipolar Behavior of a Metallic Film. Analytical Chemistry, 2014, 86, 3138-3145.	3.2	20
309	Development and Validation of an Analytical Model for Predicting Chronoamperometric Responses of Random Arrays of Micro―and Nanodisk Electrodes. ChemElectroChem, 2015, 2, 1279-1291.	1.7	20
310	Strong and Unexpected Effects of Diffusion Rates on the Generation of Electrochemiluminescence by Amine/Transitionâ€Metal(II) Systems. ChemElectroChem, 2015, 2, 811-818.	1.7	20
311	Electrochemically induced dehydrogenation of the hydride complexes [ReCIH(NCR)(Ph2PCH2CH2PPh2)2][BF4]. A mechanistic study. Journal of the Chemical Society Chemical Communications, 1992, , 1289.	2.0	19
312	Standard oxidation potentials of methylbenzenes in acetonitrile. Journal of Electroanalytical Chemistry, 1992, 325, 239-246.	1.9	19
313	Mechanism of the electrochemical oxidation of zero valent palladium complexes. Journal of Electroanalytical Chemistry, 1997, 422, 125-132.	1.9	19
314	Electrocarboxylation of Benzyl Halides through Redox Catalysis on the Preparative Scale. Chemistry - A European Journal, 2006, 12, 7433-7447.	1.7	19
315	Time-Dependent Diffusionâ~'Migration at Cylindrical and Spherical Microelectrodes:Â Steady- and Quasi-Steady-State Analytical Solution Can Be Used under Transient Conditions. Analytical Chemistry, 2007, 79, 6341-6347.	3.2	19
316	Triangulation Mapping of Oxidative Bursts Released by Single Fibroblasts by Amperometry at Microelectrodes. Analytical Chemistry, 2008, 80, 9635-9641.	3.2	19
317	Theory of Ion Transport in Electrochemically Switchable Nanoporous Metallized Membranes. ChemPhysChem, 2009, 10, 211-221.	1.0	19
318	Proâ€oxidant Properties of AZT and other Thymidine Analogues in Macrophages: Implication of the Azido Moiety in Oxidative Stress. ChemMedChem, 2010, 5, 296-301.	1.6	19
319	Diffusion from within a Spherical Body with Partially Blocked Surface: Diffusion through a Constant Surface Area. ChemPhysChem, 2010, 11, 149-158.	1.0	19
320	Channel Microband Chronoamperometry: From Transient to Steady-State Regimes. Analytical Chemistry, 2011, 83, 4170-4177.	3.2	19
321	Self-Inhibitory Electron Transfer of the Co(III)/Co(II)-Complex Redox Couple at Pristine Carbon Electrode. Analytical Chemistry, 2018, 90, 11115-11123.	3.2	19
322	Electron-transfer-catalyzed chelation of dithiocarbamate iron complexes [Fe(.eta.5-C5R5)(.eta.1SC(S)NMe2)(CO)2] (R = H, Me) induced by oxidation. Organometallics, 1990, 9, 630-640.	1.1	18
323	Dichloro(1,4,8,11-tetraazacyclotetradecane)manganese(III) chloride: cis–trans isomerisation evidenced by infrared and electrochemical studies. Journal of the Chemical Society Dalton Transactions, 1998, , 2233-2240.	1.1	18
324	First direct experimental evidence of migration contributions through monitoring of concentration profiles at low supporting electrolyte concentration. Electrochemistry Communications, 2004, 6, 887-891.	2.3	18

#	Article	IF	CITATIONS
325	Reconstruction of hydrodynamic flow profiles in a rectangular channel using electrochemical methods of analysis. Electrochimica Acta, 2007, 53, 1100-1106.	2.6	18
326	Electrochemical activation of β-lapachone in β-cyclodextrin inclusion complexes and reactivity of its reduced form towards oxygen in aqueous solutions. Journal of Electroanalytical Chemistry, 2007, 608, 125-132.	1.9	18
327	Microchip for ultrafast voltammetry. Electrochemistry Communications, 2010, 12, 897-900.	2.3	18
328	Oxidative Sequence of a Ruthenocene-Based Anticancer Drug Candidate in a Basic Environment. Organometallics, 2014, 33, 4940-4946.	1.1	18
329	Effect of the leaving group and the allylic structure on the kinetics and thermodynamics of the reaction of allylic carboxylates with palladium(0) complexes. Arkivoc, 2005, 2002, 92-101.	0.3	18
330	Unusual stabilization of formylmetal complexes. Organometallics, 1984, 3, 802-804.	1.1	17
331	Electrooxidative initiation of tin hydride-promoted radical chain reactions. Tetrahedron Letters, 1992, 33, 6495-6498.	0.7	17
332	Electrosynthesis of unsymmetrical donor-acceptor polyaryls. Tetrahedron Letters, 1992, 33, 491-494.	0.7	17
333	Synthesis of terminal-biradical compounds consisting of two N-oxyl groups connected with conjugated π-systems. Tetrahedron Letters, 1997, 38, 7391-7394.	0.7	17
334	Theory of transient and steady-state ECL generation at double-hemicylinder assemblies using conformal mapping and simulations. Electrochemistry Communications, 2003, 5, 989-994.	2.3	17
335	Multiâ€chambers Microsystem for Simultaneous and Direct Electrochemical Detection of Reactive Oxygen and Nitrogen Species Released by Cell Populations. Electroanalysis, 2016, 28, 1865-1872.	1.5	17
336	Intracellular Electrochemical Nanomeasurements Reveal that Exocytosis of Molecules at Living Neurons is Subquantal and Complex. Angewandte Chemie, 2020, 132, 6777-6780.	1.6	17
337	Quantitative Nanoâ€amperometric Measurement of Intravesicular Glutamate Content and its Subâ€Quantal Release by Living Neurons. Angewandte Chemie, 2021, 133, 15937-15942.	1.6	17
338	Monosubstitution versus disubstitution in the SRN1 reaction of dihalobenzenes with sulfanions. The role of the monosubstitution product and of its anion radical. Journal of Organic Chemistry, 1989, 54, 5688-5695.	1.7	16
339	Fullerodendrimers with a tris-isothiocyanate core allowing their anchoring onto gold electrodes. New Journal of Chemistry, 2007, 31, 1395.	1.4	16
340	Theoretical Trends of Diffusion and Reaction into Tubular Nano―and Mesoporous Structures: General Physicochemical and Physicomathematical Modeling. Chemistry - A European Journal, 2008, 14, 5449-5464.	1.7	16
341	Supramolecular effects of cyclodextrins on the electrochemical reduction and reactivity of aromatic carbonyl compounds. Journal of Electroanalytical Chemistry, 2008, 621, 134-145.	1.9	16
342	Theory and Simulation of Diffusionâ^'Reaction into Nano- and Mesoporous Structures. Experimental Application to Sequestration of Mercury(II). Analytical Chemistry, 2008, 80, 3229-3243.	3.2	16

#	Article	IF	CITATIONS
343	How "Full―is "Full Fusion―during Exocytosis from Dense Core Vesicles? Effect of SDS on "Quantalâ Release and Final Fusion Pore Size. Journal of the Electrochemical Society, 2016, 163, H853-H865.	ۥ _{1.3}	16
344	Mechanistic investigation of the anodic oxidation of 3,4,5-trimethoxytoluene in acetonitrile. Journal of Electroanalytical Chemistry, 2002, 537, 39-46.	1.9	15
345	Electrochemically active phenylenediamine probes for transition metal cation detection. New Journal of Chemistry, 2011, 35, 709.	1.4	15
346	Electrochemical Conversion of Dichloroacetic Acid to Chloroacetic Acid in a Microfluidic Stack and in a Series of Microfluidic Reactors. ChemElectroChem, 2015, 2, 684-690.	1.7	15
347	Coupling between radical and anion in the outersphere oxidation of $\hat{I}\pm$ -sulfonyl carbanions. Its role on the product distribution between dimeric olefin and disulfone. Tetrahedron, 1991, 47, 777-789.	1.0	14
348	Mechanism of the oxidative addition of Pd0 complexes generated from Pd0(dba)2 and a phosphole ligand DBP: a special case where dba does not play any inhibiting role. Journal of Organometallic Chemistry, 2002, 643-644, 416-423.	0.8	14
349	In situ and Online Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based upon Microelectrochemistry: Optimization of Electrode Locations. ChemPhysChem, 2006, 7, 482-487.	1.0	14
350	Concerted activities of nitric oxide synthases and NADPH oxidases in PLB-985 cells. Biochemical and Biophysical Research Communications, 2007, 361, 493-498.	1.0	14
351	Ferrocenyl Oligo(phenyleneâ€vinylene) Thiols for the Construction of Selfâ€Assembled Monolayers. European Journal of Inorganic Chemistry, 2007, 2007, 4035-4042.	1.0	14
352	The Nature and Efficiency of Neurotransmitter Exocytosis also Depend on Physicochemical Parameters. ChemPhysChem, 2007, 8, 1597-1605.	1.0	14
353	Theory and experiments of microelectrodes performing as concentration probes within microfluidic channels with high temporal resolution. Electrochemistry Communications, 2011, 13, 1459-1461.	2.3	14
354	Electrochemical analysis of the interactions and reactivity of ferrocene-based drugs with a lipid environment: A qualitative overview. Inorganica Chimica Acta, 2011, 374, 59-68.	1.2	14
355	Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III)-Schiff base complexes as catalysts. Electrochimica Acta, 2012, 75, 366-370.	2.6	14
356	Mass Transport at Infinite Regular Arrays of Microband Electrodes Submitted to Natural Convection: Theory and Experiments. Analytical Chemistry, 2013, 85, 12062-12069.	3.2	14
357	In vivo accurate target bio-marking of tumors through in situ biosynthesized fluorescent zinc nanoclusters. RSC Advances, 2015, 5, 74844-74849.	1.7	14
358	Interactions between Human Antibodies and Synthetic Conformational Peptide Epitopes: Innovative Approach for Electrochemical Detection of Biomarkers of Multiple Sclerosis at Platinum Electrodes. Electrochimica Acta, 2015, 176, 1239-1247.	2.6	14
359	Electrosynthesis of 2,2′,6,6′-tetraaryl 4,4′-bipyrannylidenes with eight flexible chains. Tetrahedron Letters, 1989, 30, 1383-1386.	0.7	13
360	Is Selective Monosubstitution of Dihalides via SRN1 Reaction Feasible? An Electrochemical Approach for Dichloroarenes. Journal of Organic Chemistry, 1995, 60, 18-26.	1.7	13

#	Article	IF	CITATIONS
361	Mechanistic and synthetic aspects of a novel route to poly-p-xylylene (PPX)via nickel complex catalysed electropolymerisation of 1,4-bis(chloromethyl)benzene. Journal of the Chemical Society Perkin Transactions II, 1996, , 2447.	0.9	13
362	Electrogeneration of Triphenyltin Radical, Anion, and Cation. Electrochemical Initiation of Tin Hydride-Promoted Radical Chain Reactions. Journal of Organic Chemistry, 1996, 61, 9402-9408.	1.7	13
363	Phenylarsine oxide inhibits ex vivo HIV-1 expression. Biomedicine and Pharmacotherapy, 1997, 51, 430-438.	2.5	13
364	Modelling release of nitric oxide in a slice of rat's brain: describing stimulated functional hyperemia with diffusion-reaction equations. Mathematical Medicine and Biology, 2006, 23, 27-44.	0.8	13
365	Comparative Oxidative Addition of Transition-Metal Iodocyclopentadienyl Complexes (η5-C5H4-I)MLn (M) Tj ETG Organometallics, 2007, 26, 3887-3890.	Qq1 1 0.78 1.1	34314 rgBT (13
366	Apoptosis induction and inhibition of drug resistant tumor growth in vivo involving daunorubicin-loaded graphene–gold composites. Journal of Materials Chemistry B, 2013, 1, 493-499.	2.9	13
367	A few key theoretical issues of importance in modern molecular electrochemistry. Current Opinion in Electrochemistry, 2019, 13, 33-39.	2.5	13
368	Electrosynthesis of hydridometal carbonyls. Rapid ligand substitution in transient MnO intermediates from the reduction of carbonylmanganese(I) cations. Journal of the Chemical Society Chemical Communications, 1983, , 397.	2.0	12
369	Reactivity of palladium(0) complexes in the oxidative addition of allylic acetates. Electrochimica Acta, 2001, 46, 3237-3244.	2.6	12
370	Effects of chemical environment on diffusivities within thin Nafion® films as monitored from chronoamperometric responses of generator–collector double microband assemblies. Journal of Electroanalytical Chemistry, 2003, 547, 151-161.	1.9	12
371	Redox activation of dicarbonyl(η5-cyclopentadienyl)methyl iron within the cavity of β-cyclodextrin: carbon monoxide insertion in iron–methyl bond. Journal of Organometallic Chemistry, 2003, 668, 9-16.	0.8	12
372	Electrochemistry of β-lapachone and its diazoderivative: Relevance to their compared antimicrobial activities. Electrochemistry Communications, 2005, 7, 767-772.	2.3	12
373	Capacitive and Solution Resistance Effects on Voltammetric Responses of a Thin Redox Layer Attached to Disk Microelectrodes. Analytical Chemistry, 2008, 80, 7957-7963.	3.2	12
374	Monitoring and Quantifying the Passive Transport of Molecules Through Patch–Clamp Suspended Real and Model Cell Membranes. Angewandte Chemie - International Edition, 2014, 53, 3192-3196.	7.2	12
375	Theory of Microwell Arrays Performing as Generators–Collectors Based on a Single Bipolar Plane Electrode. ChemElectroChem, 2016, 3, 487-494.	1.7	12
376	Surface Heterogeneities Matter in Fast Scan Cyclic Voltammetry Investigations of Catecholamines in Brain with Carbon Microelectrodes of High-Aspect Ratio: Dopamine Oxidation at Conical Carbon Microelectrodes. Journal of the Electrochemical Society, 2018, 165, G3057-G3065.	1.3	12
377	Mechanism of the eletrochemical reduction of hydroxyiminoanthraquinones in DMF. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 207, 151-160.	0.3	11
378	Electrochemical initiation of radical chain addition of F-n butyl iodide to acetylenic alcohols. Cyclic voltammetric investigation of the mechanism. Journal of Fluorine Chemistry, 1990, 49, 247-261.	0.9	11

#	Article	lF	CITATIONS
379	Radical chain addition of iodo-perfluoroalkanes to ethylenic or acetylenic substrates. Comparison of rates of iodine atom transfer from C4F9I to σ-vinyl and σ-alkyl α-F alkyl radicals. Journal of Fluorine Chemistry, 1992, 56, 249-258.	0.9	11
380	Oxidative dimerisation of some stabilised carbanions: a mechanistic investigation. Journal of Electroanalytical Chemistry, 2002, 532, 319-329.	1.9	11
381	Capacitive and Solution Resistance Effects on Voltammetric Responses at a Disk Microelectrode Covered with a Self-Assembled Monolayer in the Presence of Electron Hopping. Analytical Chemistry, 2009, 81, 8545-8556.	3.2	11
382	Benzyl Chloride Electroreduction on Ag Cathodes in CH3CN in the Presence of Small Amounts of Water: Evidences of Quantitative Effects on Reaction Rates and Mechanism. Electrocatalysis, 2013, 4, 353-357.	1.5	11
383	Three-electrode analytical and preparative electrochemistry in micro-volume hanging droplets. Electrochemistry Communications, 2015, 54, 41-45.	2.3	11
384	Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters Neurotransmitter Release. Angewandte Chemie, 2020, 132, 3107-3111.	1.6	11
385	Electrochemical Determination of Flow Velocity Profile in a Microfluidic Channel from Steady-State Currents: Numerical Approach and Optimization of Electrode Layout. Analytical Chemistry, 2009, 81, 7667-7676.	3.2	10
386	Prediction of Local pH Variations during Amperometric Monitoring of Vesicular Exocytotic Events at Chromaffin Cells. ChemPhysChem, 2010, 11, 2931-2941.	1.0	10
387	An organometallic derivative of a BAPTA ligand: towards electrochemically controlled cation release in biocompatible media. Chemical Communications, 2011, 47, 5199.	2.2	10
388	A new strategy for eliminating interference from EC′ mechanism during analytical measurements based on plane-band-recessed microdisk array electrodes. Electrochemistry Communications, 2014, 38, 61-64.	2.3	10
389	Molecular electrochemistry: A central method to understand the metabolic activation of therapeutic agents. The example of metallocifen anti-cancer drug candidates. Current Opinion in Electrochemistry, 2017, 2, 7-12.	2.5	10
390	Electroactive fluorescent false neurotransmitter FFN102 partially replaces dopamine in PC12 cell vesicles. Biophysical Chemistry, 2019, 245, 1-5.	1.5	10
391	Chelation of iron(II) dithiocarbamates: an electrocatalytic process with an endergonic cross electron-transfer propagation step. Journal of the Chemical Society Chemical Communications, 1988, , 200.	2.0	9
392	Direct vs indirect route in the activation of aroylpalladium(II) complexes by electron transfer. Electrochimica Acta, 1997, 42, 2143-2152.	2.6	9
393	Electrochemistry at gold nanoparticles deposited on dendrimers assemblies adsorbed onto gold and platinum surfaces. Journal of Electroanalytical Chemistry, 2011, 659, 76-82.	1.9	9
394	Surface grafting of a π-conjugated amino-ferrocifen drug. Journal of Electroanalytical Chemistry, 2013, 699, 21-27.	1.9	9
395	Unexpected single electron transfer catalysed cyclisation of prenyl sulphone dimer. Evidence for radical anion coupling in the outer-sphere oxidation of prenyl sulphone carbanion. Journal of the Chemical Society Chemical Communications, 1989, , 1543.	2.0	8
396	Photochemical Generation of Cyclopentadienyliron Dicarbonyl Anion by a Nicotinamide Adenine Dinucleotide Dimer Analogue. Inorganic Chemistry, 2001, 40, 1213-1219.	1.9	8

#	Article	IF	CITATIONS
397	Diffusion with Moving Boundary on Spherical Surfaces. ChemPhysChem, 2009, 10, 1593-1602.	1.0	8
398	Direct electrochemical reduction of organic halide droplets dispersed in water. RSC Advances, 2012, 2, 5398.	1.7	8
399	The effect of protic electron donor aromatic substituents on ferrocenic and [3]ferrocenophanic anilines and anilides: Some aspects of structure–activity relationship studies on organometallic compounds with strong antiproliferative effects. Journal of Organometallic Chemistry, 2013, 744, 92-100.	0.8	8
400	Reactivity of Transient 17- and 19-Electron Nickel(I)-Centred Radicals: CpNi(PR3) and CpNi(PR3)2. Redox Properties and Formation of the Zero-Valent Anionic Nickelate CpNi(PPh3) Acta Chemica Scandinavica, 1999, 53, 920-927.	0.7	8
401	Transition-metal derivatives of the cyclopentadienylphosphine ligands. 7. Electrochemical oxidation of rhodium complex [Rh(.muC5H4PPh2)(CO)]2 and rereduction: an ECE process including a fast reversible configurational switch. Organometallics, 1992, 11, 4150-4156.	1.1	7
402	Mimicking neuronal synaptic behavior: Processing of information with â€~AND' or â€~OR' Boolean logic via paired-band microelectrode assemblies. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1998, 1, 509-515.	9 0.1	7
403	Electrochemical Study of Methyl 2-[p-Nitrophenyl(hydroxy)methyl]acrylate. Journal of the Electrochemical Society, 2007, 154, P121.	1.3	7
404	Confocal Microscopy Imaging of Electrochemiluminescence at Double Band Microelectrode Assemblies: Numerical Solution of the Inverse Optical Problem. ChemPhysChem, 2007, 8, 1664-1676.	1.0	7
405	In Situ and On-Line Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based on Microelectrochemistry: Optimization of Channel Geometrical Parameters for Best Performance of Flow Profile Reconstruction. ChemPhysChem, 2007, 8, 1870-1874.	1.0	7
406	ls there an Intrinsic Limit to the Size of 2D Supracrystals Built from Weakly Interacting Nanoparticles?. Chemistry - A European Journal, 2008, 14, 8615-8623.	1.7	7
407	Chemo- and Product-selective Electrooxidation of 3-(Arylthiomethyl)-ΔÂ ³ -cephems. Synthesis, 2009, 2009, 3449-3459.	1.2	7
408	A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution under spherical or cylindrical diffusion. Russian Journal of Electrochemistry, 2012, 48, 593-599.	0.3	7
409	A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time. Angewandte Chemie, 2017, 129, 9582-9586.	1.6	7
410	Synthesis, characterization and X-ray crystal structure of cyclam derivatives. Part III. Formation and electrochemically induced isomerization of copper complexes of 1,8-bis(N,N-dimethylcarbamoylmethyl)-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 211-222.	0.1	6
411	Rate and mechanism of the reversible formation of a cationic (η3-allyl)palladium(II) complex in the oxidative addition of allylic acetate to a palladium(0) complex ligated by diop: an unusual behavior. Journal of Organometallic Chemistry, 2001, 624, 217-222.	0.8	6
412	Theory of Longâ€Range Diffusion of Proteins on a Spherical Biological Membrane: Application to Protein Cluster Formation and Actin omet Tail Growth. ChemPhysChem, 2009, 10, 1586-1592.	1.0	6
413	Design and electrochemical characterization of a new cobalt(II)–cyclodextrin complex. Evidence for a supramolecular stabilization of the Co(I) state. Electrochemistry Communications, 2009, 11, 114-117.	2.3	6
414	Enhancing the Bipolar Redox Cycling Efficiency of Plane-Recessed Microelectrode Arrays by Adding a Chemically Irreversible Interferent. Analytical Chemistry, 2016, 88, 8535-8541.	3.2	6

#	Article	IF	CITATIONS
415	Importance of stochastic limitations in electrochemistry at arrays of nanoelectrodes functionalized by redox self-assembled monolayers. Russian Journal of Electrochemistry, 2017, 53, 1019-1028.	0.3	6
416	Editors' Choice—Review—Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization. Journal of the Electrochemical Society, 2020, 167, 013530.	1.3	6
417	Transient cyclic voltammetry: new theoretical challenges to bring up to date a famous electrochemical lady. Journal of Solid State Electrochemistry, 2020, 24, 2023-2025.	1.2	6
418	Ultrasound-promoted aromatic nucleophilic substitution of dichlorobenzene iron(II) complexes. Tetrahedron Letters, 2009, 50, 1720-1722.	0.7	5
419	Water soluble diaza crown ether derivative: Synthesis and barium complexation studies. Polyhedron, 2014, 68, 191-198.	1.0	5
420	Theory and Simulations for the Electronâ€Transfer/Ionâ€Transfer Mode of Scanning Electrochemical Microscopy in the Presence or Absence of Homogenous Kinetics. ChemElectroChem, 2017, 4, 287-295.	1.7	5
421	Mesure directe in situ de la vitesse d'un écoulement microfluidique par couplage électrochimique entre deux microbandes parallÃʿles. Houille Blanche, 2006, 92, 60-64.	0.3	5
422	Reactivity of the electrogenerated superoxide O2â^' anion with α, ï‰-diiodoperfluorobutane. Synthesis of 4-iodoperfluorobutanoic acid. Journal of Fluorine Chemistry, 1996, 77, 21-26.	0.9	4
423	Electron transfer catalysis of the hydrogenolysis of acyl dicarbonyl cyclopentadienyliron complexes by tributyltin hydride. Journal of Organometallic Chemistry, 1998, 567, 25-29.	0.8	4
424	Structure and dynamics in colloidal and porous charged media. Journal of Physics Condensed Matter, 2002, 14, 9207-9221.	0.7	4
425	Replies to comments contained in "The True History of Adaptive Grids in Electrochemical Simulations― by D. Britz [Electrochim. Acta 56 (2011) 4420–4421]. Electrochimica Acta, 2011, 56, 4422-4423.	2.6	4
426	Electrochemistry of a ferrocene-grafted cell-penetrating peptide. Electrochimica Acta, 2012, 80, 180-186.	2.6	4
427	3D Printed Rotating Acentric Binary-Disk Electrode. Analytical Chemistry, 2018, 90, 13217-13221.	3.2	4
428	A DFT and SERS study of synergistic roles of thermodynamics and kinetics during the electrocatalytic reduction of benzyl chloride at silver cathodes. Journal of Electroanalytical Chemistry, 2022, 914, 116267.	1.9	4
429	Editorial: Frontiers of Electrochemistry. ChemPhysChem, 2003, 4, 115-115.	1.0	3
430	Electrochemical Study of Pharmacological Activity at Single Cells: Beta-lapachone Effect on Oxidative Stress of Macrophages. ECS Transactions, 2007, 3, 3-11.	0.3	3
431	Electrochemical Phenomena in the Nanoworld/Molecular Devices and Machines/Surface Science/Spectroscopic Advances/Chemistry at a Historic Crossroads. ChemPhysChem, 2009, 10, 20-23.	1.0	3
432	Editorial: Modern Electrochemistry: Interdisciplinary Research at the Forefront of Science. ChemPhysChem, 2010, 11, 2655-2656.	1.0	3

#	Article	IF	CITATIONS
433	Theoretical Insights in ECL. , 2017, , 215-256.		3
434	Free Radicals: The Red Queen and the Russian Dolls. Electrochemical Society Interface, 2017, 26, 41-45.	0.3	3
435	Modelling diffusion at random arrays of electrodes: Revisiting the Voronoi tessellation concept. Electrochimica Acta, 2021, 365, 137338.	2.6	3
436	Surface Diffusion of Underpotentialâ€Deposited Lead Adatoms on Gold Nanoelectrodes. ChemElectroChem, 2021, 8, 2282-2287.	1.7	3
437	Cyclovoltammetric studies on the reaction of dihydridotetrakis(triphenylphosphane)ruthenium(II) with methyl acrylate. CH-activation of methyl acrylate in the presence of Ru(0)(MA)2(PPh3)2. Journal of Organometallic Chemistry, 1998, 561, 175-179.	0.8	2
438	Investigation of the Mechanism of Palladium-Catalyzed Reactions by Electrochemistry. , 1998, , 379-382.		2
439	Cold atomic contact: Electron conduction in the presence of interfacial charge transfer. Electrochemistry Communications, 2014, 47, 41-44.	2.3	2
440	Theory and Simulations for the Electron Transfer/Ion Transfer Mode of SECM with Electroactive Species Present in Both Liquid Phases. ChemElectroChem, 2019, 6, 189-194.	1.7	2
441	Opening the Cobalt/Platinum Hollow Nanospheres by Photoelectrocatalysis To Efficiently Utilize the Inside and Outside for HER. ACS Applied Energy Materials, 2020, 3, 158-162.	2.5	2
442	Optimization of electrochemical time of flight measurements for precise determinations of diffusion coefficients over a wide range in various media. Electrochimica Acta, 2020, 345, 136113.	2.6	2
443	Mechanism of the palladium-catalysed electrosynthesis of diethyl carbonate from carbon monoxide and ethanol. Comptes Rendus Chimie, 2004, 7, 737-746.	0.2	1
444	Electrochemical oxidation of half-open ruthenocene compounds. Role of acyclic ligands on acetonitrile coordination. Journal of Electroanalytical Chemistry, 2007, 611, 96-106.	1.9	1
445	Water-soluble, redox-active organometallic calcium chelators. Dalton Transactions, 2012, 41, 14257.	1.6	1
446	Revisiting the Complex Osmocene Electro-Oxidation Mechanism. Electrochimica Acta, 2016, 212, 973-978.	2.6	1
447	Interactive Competition Between Individual Diffusion Layers during Cyclic Voltammetry at Random Arrays of Band and Disk Electrodes: A Thorough Analysis Based on Global Simulations. ChemElectroChem, 2021, 8, 2413-2424.	1.7	1
448	Fast Techniques in Electrochemistry Application to the Study of Chemical Reactivity. , 1988, , 73-89.		0
449	Correction. Analysis of Diffusional Broadening of Vesicular Packets of Catecholamines Released from Biological Cells during Exocytosis. Analytical Chemistry, 1993, 65, 2711-2712.	3.2	0

450 Ultramicroelectrodes: Their Use in Semi-Artificial Synapses. , 1998, , 409-412.

#	Article	IF	CITATIONS
451	In situ and Online Monitoring of Hydrodynamic Flow Profiles in Microfluidic Channels Based upon Microelectrochemistry: Optimization of Electrode Locations. ChemPhysChem, 2006, 7, 779-779.	1.0	0
452	Editorial: From Fundamental Science to Product Development: An <i>Electrochemical Paradigm</i> . ChemPhysChem, 2013, 14, 2007-2008.	1.0	0
453	Relations between Micro- and Macrophenomena. , 2015, , 371-392.		0
454	More Transparency in BioAnalysis of Exocytosis: Coupling of Electrochemistry and Fluorescence Microscopy at ITO Electrodes. BIO Web of Conferences, 2016, 6, 01004.	0.1	0
455	Theory and Simulations for the Electronâ€Transfer/Ionâ€Transfer Mode of Scanning Electrochemical Microscopy in the Presence or Absence of Homogenous Kinetics. ChemElectroChem, 2017, 4, 240-240.	1.7	0
456	Interactive Competition Between Individual Diffusion Layers during Cyclic Voltammetry at Random Arrays of Band and Disk Electrodes: A Thorough Analysis Based on Global Simulations. ChemElectroChem, 2021, 8, 2356-2356.	1.7	0
457	In Memoriam of Jeanâ€Michel Savéant (1933–2020). ChemElectroChem, 2021, 8, 2752-2753.	1.7	0
458	Mechanism of the Nickel-Catalyzed Electrosynthesis of Ketones by Heterocoupling of Acyl and Benzyl Halides. , 2001, , 69-80.		0
459	Chemical Applications of Electrochemistry at Ultramicroelectrodes. , 1991, , 269-282.		0
460	Unconventional Electrochemistry at Ultramicroelectrodes: New Approaches for the Investigation of Chemical Reactivity. , 1993, , 625-644.		0
461	One Two-Electron vs Two One-Electron Mechanisms in the Catalysis of Electrocarboxylation of Aryl Halides by Nickel and Palladium Complexes. , 1993, , 307-310.		0
462	CHAPTER 6. Real Time Monitoring of Peroxynitrite by Stimulation of Macrophages with Ultramicroelectrodes. RSC Detection Science, 2015, , 96-120.	0.0	0
463	ll. Origine de la vieÂ: un hasard (géo)chimique inéluctableÂ?. , 2017, , 19-29.		0