Sumit Kumar Sonkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3621803/publications.pdf

Version: 2024-02-01

58 papers 3,115 citations

34 h-index 55 g-index

63 all docs

63 docs citations

times ranked

63

2777 citing authors

#	Article	IF	CITATIONS
1	Doped Carbon Dots for the Selective Sensing of Hexavalent Chromium in Water. Journal of the Institution of Engineers (India): Series E, 2022, 103, 157-165.	0.9	8
2	Thiourea-functionalized graphene aerogel for the aqueous phase sensing of toxic Pb(II) metal ions and H2O2. Chemosphere, 2022, 287, 132105.	8.2	23
3	Sunlight promoted removal of toxic hexavalent chromium by cellulose derived photoactive carbon dots. Chemosphere, 2022, 287, 132287.	8.2	33
4	Sunlight-promoted photodegradation of Congo red by cadmium-sulfide decorated graphene aerogel. Chemosphere, 2022, 287, 132225.	8.2	62
5	Visible-Light-Promoted Photocatalytic Applications of Carbon Dots: A Review. ACS Applied Nano Materials, 2022, 5, 3087-3109.	5.0	43
6	Non-aqueous onion like nano-carbons from waste diesel-soot used as FRET-based sensor for sensing of nitro-phenols. Environmental Research, 2022, 212, 113308.	7.5	9
7	Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS Applied Bio Materials, 2021, 4, 252-266.	4.6	21
8	Carboxylic Acid-Terminated Carbon Nanoflakes for Selective Adsorption of Water-Soluble Cationic Dyes. ACS Applied Nano Materials, 2021, 4, 5611-5620.	5.0	41
9	Photodegradation of Azo Dyes in Sunlight Promoted by Nitrogen–Sulfur–Phosphorus Codoped Carbon Dots. ACS Applied Nano Materials, 2021, 4, 9303-9312.	5.0	44
10	Bio-mass derived functionalized graphene aerogel: a sustainable approach for the removal of multiple organic dyes and their mixtures. New Journal of Chemistry, 2021, 45, 9073-9083.	2.8	60
11	Upgrading of diesel engine exhaust waste into onion-like carbon nanoparticles for integrated degradation sensing in nano-biocomposites. New Journal of Chemistry, 2021, 45, 3675-3682.	2.8	26
12	Surface adhered fluorescent carbon dots extracted from the harmful diesel soot for sensing Fe(<scp>iii</scp>) and Hg(<scp>ii</scp>) ions. New Journal of Chemistry, 2021, 45, 20164-20172.	2.8	16
13	\hat{l}^2 -Cyclodextrin-capped ZnO-doped carbon dot as an advanced fluorescent probe for selective detection of dopamine. New Journal of Chemistry, 2021, 45, 21299-21307.	2.8	9
14	Carbon Nanomaterials Derived from Black Carbon Soot: A Review of Materials and Applications. ACS Applied Nano Materials, 2021, 4, 12825-12844.	5.0	26
15	Pollutant-based onion-like nanocarbons for improving the growth of gram plants. Materials Today Chemistry, 2020, 18, 100352.	3.5	8
16	N, S, and P-Co-doped Carbon Quantum Dots: Intrinsic Peroxidase Activity in a Wide pH Range and Its Antibacterial Applications. ACS Biomaterials Science and Engineering, 2020, 6, 5527-5537.	5.2	109
17	N, S-codoped Carbon Dots for Nontoxic Cell Imaging and As a Sunlight-Active Photocatalytic Material for the Removal of Chromium. ACS Applied Bio Materials, 2020, 3, 3656-3663.	4.6	44
18	Pollutant-Soot-Based Nontoxic Water-Soluble Onion-like Nanocarbons for Cell Imaging and Selective Sensing of Toxic Cr(VI). ACS Applied Bio Materials, 2020, 3, 3906-3913.	4.6	27

#	Article	IF	CITATIONS
19	Pollutant Diesel Soot Derived Onion-like Nanocarbons for the Adsorption of Organic Dyes and Environmental Assessment of Treated Wastewater. Industrial & Engineering Chemistry Research, 2020, 59, 12065-12074.	3.7	47
20	Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye. Solar Energy, 2020, 197, 326-331.	6.1	86
21	Sustainable feasibility of waste printer ink to magnetically separable iron oxide–doped nanocarbons for styrene oxidation. Materials Today Chemistry, 2020, 16, 100256.	3.5	15
22	N,P-Doped Carbon Nanodots for Food-Matrix Decontamination, Anticancer Potential, and Cellular Bio-Imaging Applications. Journal of Biomedical Nanotechnology, 2020, 16, 283-303.	1.1	15
23	Fluorescent microspheres of zinc 1,2-dicarbomethoxy-1,2-dithiolate complex decorated with carbon nanotubes. Carbon Letters, 2019, 29, 595-603.	5.9	34
24	Removal of toxic chromium (VI) from the wastewater under the sunlight-illumination by functionalized carbon nano-rods. Solar Energy, 2019, 193, 774-781.	6.1	27
25	Sunlight induced photodegradation of toxic azo dye by self-doped iron oxide nano-carbon from waste printer ink. Solar Energy, 2019, 193, 65-73.	6.1	42
26	Soluble non-toxic carbon nano-rods for the selective sensing of iron(<scp>iii</scp>) and chromium(<scp>vi</scp>). New Journal of Chemistry, 2019, 43, 10726-10734.	2.8	11
27	Sunlight-induced photoreduction of Cr(VI) to Cr(III) in wastewater by nitrogen-phosphorus-doped carbon dots. Npj Clean Water, 2019, 2, .	8.0	87
28	Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation of the Mixture of Dyes and its Environmental Assessment. Scientific Reports, 2019, 9, 2522.	3.3	74
29	Prospects of nanocarbons in agriculture. , 2019, , 287-326.		4
30	Surface-passivated, soluble and non-toxic graphene nano-sheets for the selective sensing of toxic Cr(<scp>vi</scp>) and Hg(<scp>ii</scp>) metal ions and as a blue fluorescent ink. Nanoscale Advances, 2019, 1, 4481-4491.	4.6	15
31	Antibacterial Nitrogen-doped Carbon Dots as a Reversible "Fluorescent Nanoswitch―and Fluorescent Ink. ACS Omega, 2019, 4, 1581-1591.	3.5	59
32	Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustainable Materials and Technologies, 2018, 16, 1-11.	3.3	40
33	Sunlight-Induced Selective Photocatalytic Degradation of Methylene Blue in Bacterial Culture by Pollutant Soot Derived Nontoxic Graphene Nanosheets. ACS Sustainable Chemistry and Engineering, 2018, 6, 579-589.	6.7	96
34	Self-doped nontoxic red-emitting Mg–N-embedded carbon dots for imaging, Cu(<scp>ii</scp>) sensing and fluorescent ink. New Journal of Chemistry, 2018, 42, 19548-19556.	2.8	44
35	Exploration of nano carbons in relevance to plant systems. New Journal of Chemistry, 2018, 42, 16411-16427.	2.8	38
36	Brightly Fluorescent Zinc-Doped Red-Emitting Carbon Dots for the Sunlight-Induced Photoreduction of Cr(VI) to Cr(III). ACS Omega, 2018, 3, 5187-5194.	3. 5	95

#	Article	IF	CITATIONS
37	Sunlight-Induced Photocatalytic Degradation of Pollutant Dye by Highly Fluorescent Red-Emitting Mg-N-Embedded Carbon Dots. ACS Sustainable Chemistry and Engineering, 2018, 6, 9246-9256.	6.7	121
38	Sustainable Changes in the Contents of Metallic Micronutrients in First Generation Gram Seeds Imposed by Carbon Nano-onions: Life Cycle Seed to Seed Study. ACS Sustainable Chemistry and Engineering, 2017, 5, 2906-2916.	6.7	73
39	Pollutant Soot for Pollutant Dye Degradation: Soluble Graphene Nanosheets for Visible Light Induced Photodegradation of Methylene Blue. ACS Sustainable Chemistry and Engineering, 2017, 5, 8860-8869.	6.7	90
40	Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods. International Journal of Photoenergy, 2016, 2016, 1-8.	2.5	40
41	From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Advances, 2016, 6, 37319-37329.	3.6	76
42	Sustainable Feasibility of the Environmental Pollutant Soot to Few-Layer Photoluminescent Graphene Nanosheets for Multifunctional Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 6399-6408.	6.7	60
43	Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA. New Journal of Chemistry, 2016, 40, 1571-1579.	2.8	49
44	A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications. RSC Advances, 2015, 5, 87528-87534.	3.6	38
45	Ferromagnetic Behaviour of Anthropogenic Multi-Walled Carbon Nanotubes Trapped in Spider Web Indoor. Journal of Nanoscience and Nanotechnology, 2014, 14, 2532-2538.	0.9	32
46	P ₂ O ₅ Assisted Green Synthesis of Multicolor Fluorescent Water Soluble Carbon Dots. Journal of Nanoscience and Nanotechnology, 2014, 14, 2334-2342.	0.9	36
47	Toward Structurally Defined Carbon Dots as Ultracompact Fluorescent Probes. ACS Nano, 2014, 8, 4522-4529.	14.6	218
48	Pollutant soot of diesel engine exhaust transformed to carbon dots for multicoloured imaging of E. coli and sensing cholesterol. RSC Advances, 2014, 4, 30100.	3.6	81
49	Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Advances, 2014, 4, 5838.	3.6	63
50	Water soluble nanocarbons arrest the growth of mosquitoes. RSC Advances, 2013, 3, 22504.	3.6	33
51	Isolation of water soluble carbon nanotubes with network structure possessing multipodal junctions and its magnetic property. RSC Advances, 2013, 3, 7306.	3.6	33
52	Carbon Nano-Onions as Nontoxic and High-Fluorescence Bioimaging Agent in Food Chain—An <l>ln Vivo</l> Study from Unicellular <l>E. coli</l> to Multicellular <l>C. elegans</l> . Materials Express, 2012, 2, 105-114.	0.5	79
53	Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale, 2012, 4, 7670.	5.6	126
54	Enhanced persistence of fog under illumination for carbon nanotube fog condensation nuclei. Journal of Applied Physics, 2012, 112, 024901.	2.5	12

#	Article	IF	CITATIONS
55	Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 2011, 3, 1176.	5.6	257
56	Carbon Nanoâ€onions for Imaging the Life Cycle of <i>Drosophila Melanogaster</i> . Small, 2011, 7, 3170-3177.	10.0	115
57	Carbon Nanocubes and Nanobricks from Pyrolysis of Rice. Journal of Nanoscience and Nanotechnology, 2010, 10, 4064-4067.	0.9	26
58	Water soluble carbon nanotubes affect growth of the common gram (Cicer arietinum). Nature Precedings, 2009, , .	0.1	0