Shutao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3621161/publications.pdf

Version: 2024-02-01

284 papers 25,096 citations

75 h-index 9118 149 g-index

305 all docs

305
docs citations

305 times ranked 25585 citing authors

#	Article	IF	CITATIONS
1	Scalable and Robust Bio-inspired Organogel Coating by Spraying Method Towards Dynamic Anti-scaling. Chemical Research in Chinese Universities, 2023, 39, 127-132.	1.3	2
2	Thermoâ€Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid–Solid Switchable Materials. Angewandte Chemie, 2022, 134, e202114602.	1.6	4
3	Thermoâ€Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid–Solid Switchable Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
4	Reconstructable Uterusâ€Derived Materials for Uterus Recovery toward Efficient Live Births. Advanced Materials, 2022, 34, e2106510.	11.1	15
5	Surface adhesion engineering for robust organic semiconductor devices. Journal of Materials Chemistry C, 2022, 10, 2516-2526.	2.7	2
6	Cell-based biocomposite engineering directed by polymers. Lab on A Chip, 2022, 22, 1042-1067.	3.1	8
7	Utilizing Heterostructured Porous Particles to Improve Traditional Paper Chromatography for Spontaneous Protein Separation. Langmuir, 2022, 38, 4250-4255.	1.6	2
8	WETâ€Induced Layered Organohydrogel as Bioinspired "Stickyâ^'Slippy Skinâ€Ifor Robust Underwater Oilâ€Repellency. Advanced Materials, 2022, 34, e2110408.	11.1	29
9	Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Research, 2022, 15, 5653-5662.	5.8	10
10	Space-Confinment-Enhanced Fluorescence Detection of DNA on Hydrogel Particles Array. ACS Nano, 2022, 16, 6266-6273.	7.3	31
11	Bioinspired superwettable electrodes towards electrochemical biosensing. Chemical Science, 2022, 13, 5069-5084.	3.7	14
12	Emerging Nanoporous Materials for Biomolecule Separation. Advanced Functional Materials, 2022, 32,	7.8	11
13	A Uterusâ€Inspired Niche Drives Blastocyst Development to the Early Organogenesis. Advanced Science, 2022, 9, .	5.6	4
14	Semi-convertible Hydrogel Enabled Photoresponsive Lubrication. Matter, 2021, 4, 675-687.	5.0	33
15	How to Prevent Bubbles in Microfluidic Channels. Langmuir, 2021, 37, 2187-2194.	1.6	20
16	A Spider‧ilkâ€Inspired Wet Adhesive with Supercold Tolerance. Advanced Materials, 2021, 33, e2007301.	11.1	59
17	A Wettingâ€Enabledâ€Transfer (WET) Strategy for Precise Surface Patterning of Organohydrogels. Advanced Materials, 2021, 33, e2008557.	11.1	36
18	Unusual Nanofractal Microparticles for Rapid Protein Capture and Release. Small, 2021, 17, e2102802.	5.2	10

#	Article	IF	Citations
19	Recent Progress of Bioinspired Scalephobic Surfaces with Specific Barrier Layers. Langmuir, 2021, 37, 8639-8657.	1.6	15
20	Polymerâ€Assisted Metallization of Mammalian Cells. Advanced Materials, 2021, 33, e2102348.	11.1	12
21	Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing. Chemical Research in Chinese Universities, 2021, 37, 846-854.	1.3	5
22	Nacreâ€Inspired Biomineralized Mesh toward Scalable and Robust Oil–Water Separation with High Efficiency. Advanced Materials Interfaces, 2021, 8, 2100852.	1.9	10
23	Evaporationâ€Induced rGO Coatings for Highly Sensitive and Nonâ€Invasive Diagnosis of Prostate Cancer in the PSA Gray Zone. Advanced Materials, 2021, 33, e2103999.	11.1	18
24	Advanced Nanotechnologies for Extracellular Vesicleâ€Based Liquid Biopsy. Advanced Science, 2021, 8, e2102789.	5.6	46
25	Recent Progress of Spider-Silk-Inspired Adhesive Materials. , 2021, 3, 1453-1467.		15
26	A Bioinspired Adhesiveâ€Integratedâ€Agent Strategy for Constructing Robust Gasâ€Sensing Arrays. Advanced Materials, 2021, 33, e2106067.	11.1	11
27	A reversible underwater glue based on photo- and thermo-responsive dynamic covalent bonds. Materials Horizons, 2020, 7, 282-288.	6.4	113
28	Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion. Advanced Functional Materials, 2020, 30, 1905287.	7.8	137
29	Advanced Antiscaling Interfacial Materials toward Highly Efficient Heat Energy Transfer. Advanced Functional Materials, 2020, 30, 1904796.	7.8	33
30	Recent Progress of Microfluidic Devices for Hemodialysis. Small, 2020, 16, e1904076.	5.2	24
31	Manipulating the hydrophobicity of DNA as a universal strategy for visual biosensing. Nature Protocols, 2020, 15, 316-337.	5.5	19
32	Recent progress of electrowetting for droplet manipulation: from wetting to superwetting systems. Materials Chemistry Frontiers, 2020, 4, 140-154.	3.2	67
33	Bioinspired wettable–nonwettable micropatterns for emerging applications. Journal of Materials Chemistry B, 2020, 8, 8101-8115.	2.9	19
34	Superwettable Surface Engineering in Controlling Cell Adhesion for Emerging Bioapplications. Small Methods, 2020, 4, 2000573.	4.6	40
35	Durable Underwater Superoleophobic Coatings via Dispersed Micro Particle-Induced Hierarchical Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin. ACS Applied Materials & Structures Inspired by Pomfret Skin.	4.0	14
36	Bioinspired Ultrafast-Responsive Nanofluidic System for Ion and Molecule Transport with Speed Control. ACS Nano, 2020, 14, 12614-12620.	7. 3	21

#	Article	IF	Citations
37	Integrated Ultrasonic Aggregation-Induced Enrichment with Raman Enhancement for Ultrasensitive and Rapid Biosensing. Analytical Chemistry, 2020, 92, 7816-7821.	3.2	54
38	Underwater Superoleophobicity: Nacreâ€Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity (Adv. Mater. 11/2020). Advanced Materials, 2020, 32, 2070084.	11.1	3
39	An innovative armour-strategy for robust superhydrophobic surfaces. Science China Chemistry, 2020, 63, 1578-1579.	4.2	1
40	Superwettable electrochemical biosensor based on a dual-DNA walker strategy for sensitive E. coli O157: H7 DNA detection. Sensors and Actuators B: Chemical, 2020, 321, 128472.	4.0	29
41	Hydrogel-Coated Dental Device with Adhesion-Inhibiting and Colony-Suppressing Properties. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9718-9725.	4.0	65
42	GrenzflÄ g henpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	1.6	11
43	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	7.2	204
44	Nacreâ€Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity. Advanced Materials, 2020, 32, e1907413.	11.1	51
45	Bioinspired Superwettable Microspine Chips with Directional Droplet Transportation for Biosensing. ACS Nano, 2020, 14, 4654-4661.	7.3	81
46	Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature, 2020, 580, 210-215.	13.7	284
47	Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. CCS Chemistry, 2020, 2, 533-543.	4.6	7
48	Super Adhesive of Nanoparticle Solutions. Acta Chimica Sinica, 2020, 78, 463.	0.5	1
49	Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. CCS Chemistry, 2020, 2, 533-543.	4.6	O
50	A Selfâ€Pumping Dressing for Draining Excessive Biofluid around Wounds. Advanced Materials, 2019, 31, e1804187.	11.1	220
51	Directional transport of centimeter-scale object on anisotropic microcilia surface under water. Science China Materials, 2019, 62, 236-244.	3.5	13
52	Bioinspired Microfluidic Device by Integrating a Porous Membrane and Heterostructured Nanoporous Particles for Biomolecule Cleaning. ACS Nano, 2019, 13, 8374-8381.	7.3	40
53	Photo-Irresponsive Molecule-Amplified Cell Release on Photoresponsive Nanostructured Surfaces. ACS Applied Materials & District Surfaces, 2019, 11, 29681-29688.	4.0	18
54	Bioinspired Janus Textile with Conical Micropores for Human Body Moisture and Thermal Management. Advanced Materials, 2019, 31, e1904113.	11.1	243

#	Article	IF	Citations
55	Asymmetric Janus adhesive tape prepared by interfacial hydrosilylation for wet/dry amphibious adhesion. NPG Asia Materials, 2019, 11 , .	3.8	33
56	Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release. Advanced Materials Interfaces, 2019, 6, 1801569.	1.9	13
57	A three-dimensional DNA walking machine for the ultrasensitive dual-modal detection of miRNA using a fluorometer and personal glucose meter. Nanoscale, 2019, 11, 11279-11284.	2.8	43
58	Bioinspired superwettable micropatterns for biosensing. Chemical Society Reviews, 2019, 48, 3153-3165.	18.7	110
59	Differential Homeostasis of Sessile and Pendant Epithelium Reconstituted in a 3Dâ€Printed "GeminiChipâ€∙ Advanced Materials, 2019, 31, e1900514.	11.1	12
60	Precise Synthesis of Polymer Particles Spanning from Anisotropic Janus Particles to Heterogeneous Nanoporous Particles. Macromolecules, 2019, 52, 3237-3243.	2.2	19
61	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. Advanced Materials, 2019, 31, e1900582.	11.1	73
62	Binary polymer brush patterns from facile initiator stickiness for cell culturing. Faraday Discussions, 2019, 219, 189-202.	1.6	8
63	Selfâ€Organization: Topographyâ€Induced Cell Selfâ€Organization from Simple to Complex Aggregates (Small 15/2019). Small, 2019, 15, 1970080.	5.2	0
64	Superhydrophobic Archwires: Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release (Adv. Mater. Interfaces 7/2019). Advanced Materials Interfaces, 2019, 6, 1970046.	1.9	4
65	Topographyâ€Induced Cell Selfâ€Organization from Simple to Complex Aggregates. Small, 2019, 15, e1900030.	5.2	10
66	pHâ€Regulated Heterostructure Porous Particles Enable Similarly Sized Protein Separation. Advanced Materials, 2019, 31, e1900391.	11.1	38
67	Skin Adhesives with Controlled Adhesion by Polymer Chain Mobility. ACS Applied Materials & Discrete Skin Adhesives, 2019, 11, 1496-1502.	4.0	48
68	Tunable multi-stage wettability and adhesion force on polymer brushes triggered by temperature and pH. Science China Materials, 2019, 62, 597-603.	3.5	5
69	Bio-inspired superhydrophilic coatings with high anti-adhesion against mineral scales. NPG Asia Materials, 2018, 10, e471-e471.	3.8	30
70	AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosensors and Bioelectronics, 2018, 111, 124-130.	5.3	69
71	Electrochemical Responsive Superhydrophilic Surfaces of Polythiophene Derivatives towards Cell Capture and Release. ChemPhysChem, 2018, 19, 2046-2051.	1.0	13
72	Seeded Mineralization Leads to Hierarchical CaCO ₃ Thin Coatings on Fibers for Oil/Water Separation Applications. Langmuir, 2018, 34, 2942-2951.	1.6	33

#	Article	IF	CITATIONS
73	Bioinspired Supramolecular Lubricating Hydrogel Induced by Shear Force. Journal of the American Chemical Society, 2018, 140, 3186-3189.	6.6	112
74	Janus Particles Synthesis by Emulsion Interfacial Polymerization: Polystyrene as Seed or Beyond?. Macromolecules, 2018, 51, 1591-1597.	2.2	51
75	Bioinspired Superdurable Pestle‣oop Mechanical Interlocker with Tunable Peeling Force, Strong Shear Adhesion, and Low Noise. Advanced Science, 2018, 5, 1700787.	5.6	17
76	Protein-mediated anti-adhesion surface against oral bacteria. Nanoscale, 2018, 10, 2711-2714.	2.8	28
77	Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers. ACS Sensors, 2018, 3, 72-78.	4.0	84
78	Photo and Thermo Dualâ€Responsive Copolymer Surfaces for Efficient Cell Capture and Release. ChemPhysChem, 2018, 19, 2107-2112.	1.0	23
79	Photo-responsive smart surfaces with controllable cell adhesion. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 202-211.	2.0	26
80	Superwettable microchips with improved spot homogeneity toward sensitive biosensing. Biosensors and Bioelectronics, 2018, 102, 418-424.	5.3	47
81	Renewable superwettable biochip for miRNA detection. Sensors and Actuators B: Chemical, 2018, 258, 715-721.	4.0	42
82	Nonswellable hydrogels with robust micro/nano-structures and durable superoleophobic surfaces under seawater. Science China Chemistry, 2018, 61, 64-70.	4.2	25
83	Bioinspired DNA–Inorganic Hybrid Nanoflowers Combined with a Personal Glucose Meter for Onsite Detection of miRNA. ACS Applied Materials & Interfaces, 2018, 10, 42050-42057.	4.0	58
84	Simultaneous Monitoring of Mitochondrial Temperature and ATP Fluctuation Using Fluorescent Probes in Living Cells. Analytical Chemistry, 2018, 90, 12553-12558.	3.2	39
85	Controlling Droplet Motion on an Organogel Surface by Tuning the Chain Length of DNA and Its Biosensing Application. CheM, 2018, 4, 2929-2943.	5.8	42
86	Artificial Asymmetric Cilia Array of Dielectric Elastomer for Cargo Transportation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42979-42984.	4.0	27
87	Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10046-10051.	3.3	27
88	Polyoxometalate-based microcrystal arrays patterned on air-grid superwettable surface. Scientific Reports, 2018, 8, 13915.	1.6	1
89	Synergistic Effect of Granular Seed Substrates and Soluble Additives in Structural Control of Prismatic CaCO ₃ Thin Films. Langmuir, 2018, 34, 11126-11138.	1.6	7
90	Frosted Slides Decorated with Silica Nanowires for Detecting Circulating Tumor Cells from Prostate Cancer Patients. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19545-19553.	4.0	25

#	Article	IF	Citations
91	Controlled Growth of Patterned Conducting Polymer Microsuckers on Superhydrophobic Micropillarâ€Structured Templates. Advanced Functional Materials, 2018, 28, 1800240.	7.8	27
92	Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids. Nano Research, 2018, 11, 5704-5715.	5.8	13
93	Recent Progress in Isolation and Detection of Extracellular Vesicles for Cancer Diagnostics. Advanced Healthcare Materials, 2018, 7, e1800484.	3.9	106
94	Bio-Inspired Underwater Super Oil-Repellent Coatings for Anti-Oil Pollution. Langmuir, 2018, 34, 6063-6069.	1.6	21
95	Interfacially Polymerized Particles with Heterostructured Nanopores for Glycopeptide Separation. Advanced Materials, 2018, 30, e1803299.	11.1	54
96	Enhanced lateral flow assay with double conjugates for the detection of exosomes. Science China Chemistry, 2018, 61, 1423-1429.	4.2	23
97	Hydrophilic/Oleophilic Magnetic Janus Particles for the Rapid and Efficient Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1802493.	7.8	144
98	A highly sensitive and facile graphene oxide-based nucleic acid probe: Label-free detection of telomerase activity in cancer patient's urine using AlEgens. Biosensors and Bioelectronics, 2017, 89, 417-421.	5.3	53
99	Advances in Bioinspired Interfacial Materials with Superwettability. Small, 2017, 13, 1604106.	5.2	4
100	Recent progress in interfacial polymerization. Materials Chemistry Frontiers, 2017, 1, 1028-1040.	3.2	116
101	Near-infrared (NIR) controlled reversible cell adhesion on a responsive nano-biointerface. Nano Research, 2017, 10, 1345-1355.	5.8	41
102	Efficient Capture of Cancer Cells by Their Replicated Surfaces Reveals Multiscale Topographic Interactions Coupled with Molecular Recognition. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10537-10543.	4.0	44
103	Microâ€∤Nanomachines: Fuelâ€Free Synthetic Microâ€∤Nanomachines (Adv. Mater. 9/2017). Advanced Materials, 2017, 29, .	11.1	4
104	Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Science China Chemistry, 2017, 60, 614-620.	4.2	42
105	Recent Progress of Musselâ€Inspired Underwater Adhesives. Chinese Journal of Chemistry, 2017, 35, 811-820.	2.6	35
106	Frontispiece: Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. Angewandte Chemie - International Edition, 2017, 56, .	7.2	1
107	Bioinspired Pollenâ€Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1700003.	3.9	31
108	Antibacterial Property of a Polyethylene Glycol-Grafted Dental Material. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17688-17692.	4.0	67

#	Article	IF	Citations
109	A general strategy to synthesize chemically and topologically anisotropic Janus particles. Science Advances, 2017, 3, e1603203.	4.7	105
110	Directing Stem Cell Differentiation <i>via</i> Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array. ACS Nano, 2017, 11, 5915-5924.	7.3	89
111	A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization. NPG Asia Materials, 2017, 9, e380-e380.	3.8	71
112	Frontispiz: Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. Angewandte Chemie, 2017, 129, .	1.6	0
113	Ni Foam-Supported Carbon-Sheathed NiMoO ₄ Nanowires as Integrated Electrode for High-Performance Hybrid Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 5964-5971.	3.2	61
114	A bio-inspired high strength three-layer nanofiber vascular graft with structure guided cell growth. Journal of Materials Chemistry B, 2017, 5, 3758-3764.	2.9	62
115	Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. Angewandte Chemie - International Edition, 2017, 56, 5720-5724.	7.2	54
116	Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. Angewandte Chemie, 2017, 129, 5814-5818.	1.6	11
117	Fuelâ€Free Synthetic Microâ€∤Nanomachines. Advanced Materials, 2017, 29, 1603250.	11.1	310
118	Superwettable Microchips as a Platform toward Microgravity Biosensing. ACS Nano, 2017, 11, 621-626.	7.3	74
119	Photo-responsive polymer materials for biological applications. Chinese Chemical Letters, 2017, 28, 2085-2091.	4.8	35
120	Architecting a Mesoporous N-Doped Graphitic Carbon Framework Encapsulating CoTe ₂ as an Efficient Oxygen Evolution Electrocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 36146-36153.	4.0	73
121	Promoting Cell Migration in Tissue Engineering Scaffolds with Graded Channels. Advanced Healthcare Materials, 2017, 6, 1700472.	3.9	41
122	Antioxidant-loaded carbon nanotube to sustain a long-term aging-protection for acrylonitrile-butadiene rubber. Polymer Degradation and Stability, 2017, 144, 93-99.	2.7	23
123	Visible-light-responsive polymeric multilayers for trapping and release of cargoes via host–guest interactions. Polymer Chemistry, 2017, 8, 5525-5532.	1.9	31
124	Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2, .	23.3	1,212
125	Interfacial Engineering of Hierarchically Porous NiTi/Hydrogels Nanocomposites with Exceptional Antibiofouling Surfaces. Advanced Materials, 2017, 29, 1602869.	11.1	56
126	Bioâ€Inspired Design and Fabrication of Micro/Nanoâ€Brush Dual Structural Surfaces for Switchable Oil Adhesion and Antifouling. Small, 2017, 13, 1602020.	5.2	69

#	Article	IF	Citations
127	Wettability Effect on Stem Cell Behavior. , 2017, , 245-255.		1
128	Photoswitched Cell Adhesion on Azobenzeneâ€Containing Selfâ€Assembled Films. ChemPhysChem, 2016, 17, 2503-2508.	1.0	26
129	Smart Thin Hydrogel Coatings Harnessing Hydrophobicity and Topography to Capture and Release Cancer Cells. Small, 2016, 12, 4697-4701.	5.2	61
130	A Green Route for Substrate-Independent Oil-Repellent Coatings. Scientific Reports, 2016, 6, 38016.	1.6	6
131	Thermal decomposition kinetics and mechanism of low-temperature hydrogenated acrylonitrile butadiene rubber composites with sodium methacrylate. Chemical Research in Chinese Universities, 2016, 32, 1045-1051.	1.3	1
132	Improved understanding on the reinforcement of low-temperature hydrogenated nitrile butadiene rubber composites by in situ polymerization of unsaturated metal methacrylate: influences of salt cation. RSC Advances, 2016, 6, 104416-104424.	1.7	5
133	Amplified effect of surface charge on cell adhesion by nanostructures. Nanoscale, 2016, 8, 12540-12543.	2.8	41
134	Improved mechanical properties and thermal degradation of low-temperature hydrogenated acrylonitrile butadiene rubber composites with poly(sodium methacrylate) nanowires. RSC Advances, 2016, 6, 64110-64120.	1.7	6
135	Surface Wettability Switched Cell Adhesion and Detachment on Conducting Polymer Nanoarray. Advanced Materials Interfaces, 2016, 3, 1600598.	1.9	32
136	Light-Triggered Specific Cancer Cell Release from Cyclodextrin/Azobenzene and Aptamer-Modified Substrate. ACS Applied Materials & Substrate. ACS	4.0	88
137	Understanding Surface Adhesion in Nature: A Peeling Model. Advanced Science, 2016, 3, 1500327.	5.6	92
138	Cell micropatterns based on silicone-oil-modified slippery surfaces. Nanoscale, 2016, 8, 18612-18615.	2.8	33
139	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. Angewandte Chemie, 2016, 128, 3679-3683.	1.6	15
140	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. Angewandte Chemie - International Edition, 2016, 55, 3615-3619.	7.2	64
141	Three-dimensional superhydrophobic copper 7,7,8,8-tetracyanoquinodimethane biointerfaces with the capability of high adhesion of osteoblasts. Nanoscale, 2016, 8, 3264-3267.	2.8	23
142	Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. Nano Letters, 2016, 16, 766-772.	4.5	122
143	Recent progress of abrasion-resistant materials: learning from nature. Chemical Society Reviews, 2016, 45, 237-251.	18.7	42
144	Thermoresponsive Materials: Underwater Thermoresponsive Surface with Switchable Oil-Wettability between Superoleophobicity and Superoleophilicity (Small 27/2015). Small, 2015, 11, 3337-3337.	5.2	1

#	Article	IF	CITATIONS
145	Saltâ€Tolerant Superoleophobicity on Alginate Gel Surfaces Inspired by Seaweed (<i>Saccharina) Tj ETQq1 1 0.78</i>	4314 rgBT 11.1	/Overlock
146	Antibodyâ€Modified Reduced Graphene Oxide Films with Extreme Sensitivity to Circulating Tumor Cells. Advanced Materials, 2015, 27, 6848-6854.	11.1	126
147	Ultratrace DNA Detection Based on the Condensingâ€Enrichment Effect of Superwettable Microchips. Advanced Materials, 2015, 27, 6878-6884.	11.1	135
148	lonicâ€Liquidâ€Gel Surfaces Showing Easyâ€Sliding and Ultradurable Features. Advanced Materials Interfaces, 2015, 2, 1500177.	1.9	38
149	Semiâ€Eggâ€Like Heterogeneous Compartmentalization of Cells Controlled by Contact Angle Hysteresis. Advanced Functional Materials, 2015, 25, 4506-4511.	7.8	8
150	Rapid Cell Patterning Induced by Differential Topography on Silica Nanofractal Substrates. Small, 2015, 11, 5642-5646.	5.2	16
151	Directly Coating Hydrogel on Filter Paper for Effective Oil–Water Separation in Highly Acidic, Alkaline, and Salty Environment. Advanced Functional Materials, 2015, 25, 5368-5375.	7.8	322
152	Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor. Nanoscale, 2015, 7, 11460-11467.	2.8	42
153	A Self-Cleaning TiO2 Nanosisal-like Coating toward Disposing Nanobiochips of Cancer Detection. ACS Nano, 2015, 9, 9284-9291.	7.3	76
154	Topographical Binding to Mucosa-Exposed Cancer Cells: Pollen-Mimetic Porous Microspheres with Tunable Pore Sizes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8961-8967.	4.0	12
155	Underwater Thermoresponsive Surface with Switchable Oilâ€Wettability between Superoleophobicity and Superoleophilicity. Small, 2015, 11, 3338-3342.	5.2	54
156	Trap Effect of Threeâ€Dimensional Fibers Network for High Efficient Cancerâ€Cell Capture. Advanced Healthcare Materials, 2015, 4, 838-843.	3.9	53
157	Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical Reviews, 2015, 115, 8230-8293.	23.0	1,292
158	Capillary-driven spontaneous oil/water separation by superwettable twines. Nanoscale, 2015, 7, 13164-13167.	2.8	19
159	Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(II) complexes: A way towards cancer therapy?. Biomaterials, 2015, 63, 102-114.	5.7	56
160	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-6654.	7.3	279
161	Fabrication of Patterned Concave Microstructures by Inkjet Imprinting. Advanced Functional Materials, 2015, 25, 3286-3294.	7.8	73
162	Splitting a Droplet for Femtoliter Liquid Patterns and Single Cell Isolation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9060-9065.	4.0	95

#	Article	IF	CITATIONS
163	Superwetting Surfaces under Different Media: Effects of Surface Topography on Wettability. Small, 2015, 11, 1939-1946.	5.2	142
164	A Bioâ€inspired Potassium and pH Responsive Doubleâ€gated Nanochannel. Advanced Functional Materials, 2015, 25, 421-426.	7.8	79
165	Fabricating Surfaces with Tunable Wettability and Adhesion by Ionic Liquids in a Wide Range. Small, 2015, 11, 1782-1786.	5.2	34
166	Multifunctional "Smart―Particles Engineered from Live Immunocytes: Toward Capture and Release of Cancer Cells. Advanced Materials, 2015, 27, 310-313.	11.1	123
167	Grooved Organogel Surfaces towards Anisotropic Sliding of Water Droplets. Advanced Materials, 2014, 26, 3131-3135.	11.1	113
168	Threeâ€Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells. Advanced Materials Interfaces, 2014, 1, 1300043.	1.9	82
169	Dualâ€Scaled Porous Nitrocellulose Membranes with Underwater Superoleophobicity for Highly Efficient Oil/Water Separation. Advanced Materials, 2014, 26, 1771-1775.	11.1	311
170	Cancer Cells: Underwater-Transparent Nanodendritic Coatings for Directly Monitoring Cancer Cells (Adv. Healthcare Mater. 3/2014). Advanced Healthcare Materials, 2014, 3, 460-460.	3.9	1
171	Plateletâ€Inspired Multiscaled Cytophilic Interfaces with High Specificity and Efficiency toward Pointâ€ofâ€Care Cancer Diagnosis. Small, 2014, 10, 4677-4683.	5.2	25
172	Adsorption–desorption oscillations of nanoparticles on a honeycomb-patterned pH-responsive hydrogel surface in a closed reaction system. Physical Chemistry Chemical Physics, 2014, 16, 25296-25305.	1.3	7
173	Filefishâ€Inspired Surface Design for Anisotropic Underwater Oleophobicity. Advanced Functional Materials, 2014, 24, 809-816.	7.8	220
174	Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chemical Society Reviews, 2014, 43, 2385-2401.	18.7	255
175	Poly(N-isopropylacrylamide)-based thermo-responsive surfaces with controllable cell adhesion. Science China Chemistry, 2014, 57, 552-557.	4.2	43
176	Rapid Generation of Cell Gradients by Utilizing Solely Nanotopographic Interactions on a Bioâ€inert Glass Surface. Angewandte Chemie - International Edition, 2014, 53, 2915-2918.	7.2	22
177	Designing Fractal Nanostructured Biointerfaces for Biomedical Applications. ChemPhysChem, 2014, 15, 1550-1561.	1.0	38
178	Hierarchical Biointerfaces Assembled by Leukocyteâ€Inspired Particles for Specifically Recognizing Cancer Cells. Small, 2014, 10, 3735-3741.	5.2	37
179	Recent Progress in Biointerfaces with Controlled Bacterial Adhesion by Using Chemical and Physical Methods. Chemistry - an Asian Journal, 2014, 9, 2004-2016.	1.7	39
180	A synergy effect between the hydrophilic PEG and rapid solvent evaporation induced formation of tunable porous microspheres from a triblock copolymer. RSC Advances, 2014, 4, 629-633.	1.7	9

#	Article	IF	Citations
181	Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays. Nanoscale, 2014, 6, 8318.	2.8	19
182	Underwaterâ€Transparent Nanodendritic Coatings for Directly Monitoring Cancer Cells. Advanced Healthcare Materials, 2014, 3, 332-337.	3.9	32
183	Efficient enrichment of glycopeptides using phenylboronic acid polymer brush modified silica microspheres. Journal of Materials Chemistry B, 2014, 2, 2276-2281.	2.9	27
184	Quadratic isothermal amplification for the detection of microRNA. Nature Protocols, 2014, 9, 597-607.	5.5	56
185	Oleophobicity: Filefish-Inspired Surface Design for Anisotropic Underwater Oleophobicity (Adv.) Tj ETQq1 1 0.78	4314 rgBT 7.8	/Overlock 10
186	Lab in a Tube: Ultrasensitive Detection of MicroRNAs at the Single-Cell Level and in Breast Cancer Patients Using Quadratic Isothermal Amplification. Journal of the American Chemical Society, 2013, 135, 4604-4607.	6.6	334
187	A Triggered DNA Hydrogel Cover to Envelop and Release Single Cells. Advanced Materials, 2013, 25, 4714-4717.	11.1	122
188	Oil-soluble Ni-Mo sulfide nanoparticles and their hydrogenation catalytic properties. Petroleum Science, 2013, 10, 571-576.	2.4	7
189	Space-confined fabrication of silver nanodendrites and their enhanced SERS activity. Nanoscale, 2013, 5, 4284.	2.8	57
190	An Ionâ€Induced Lowâ€Oilâ€Adhesion Organic/Inorganic Hybrid Film for Stable Superoleophobicity in Seawater. Advanced Materials, 2013, 25, 606-611.	11.1	123
191	Papilla-like magnetic particles with hierarchical structure for oil removal from water. Chemical Communications, 2013, 49, 8752.	2.2	70
192	Cytophilic/Cytophobic Design of Nanomaterials at Biointerfaces. Small, 2013, 9, 1444-1448.	5.2	14
193	Dual-Responsive Surfaces Modified with Phenylboronic Acid-Containing Polymer Brush To Reversibly Capture and Release Cancer Cells. Journal of the American Chemical Society, 2013, 135, 7603-7609.	6.6	371
194	Nanoporous microspheres: from controllable synthesis to healthcare applications. Journal of Materials Chemistry B, 2013, 1, 2222.	2.9	82
195	Organogelâ€based Thin Films for Selfâ€Cleaning on Various Surfaces. Advanced Materials, 2013, 25, 4477-4481.	11.1	183
196	Hydrophobic Interactionâ€Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces. Advanced Materials, 2013, 25, 922-927.	11.1	247
197	Bioinspired multiscale surfaces with special wettability. MRS Bulletin, 2013, 38, 375-382.	1.7	71
198	Scab-Inspired Cytophilic Membrane of Anisotropic Nanofibers for Rapid Wound Healing. ACS Applied Materials & Diterfaces, 2013, 5, 4821-4826.	4.0	23

#	Article	IF	Citations
199	Nacre-Inspired Design of Mechanical Stable Coating with Underwater Superoleophobicity. ACS Nano, 2013, 7, 5077-5083.	7.3	172
200	Programmable Fractal Nanostructured Interfaces for Specific Recognition and Electrochemical Release of Cancer Cells. Advanced Materials, 2013, 25, 3566-3570.	11.1	198
201	Aligned silicon nanowires with fineâ€tunable tilting angles by metalâ€assisted chemical etching on offâ€cut wafers. Physica Status Solidi - Rapid Research Letters, 2013, 7, 655-658.	1.2	6
202	Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Materials, 2013, 5, e63-e63.	3.8	114
203	Emerging Nanotechnology for Efficient Capture of Circulating Tumor Cells., 2012,, 172-190.		0
204	An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. Soft Matter, 2012, 8, 6740.	1.2	89
205	A heatable and evaporation-free miniature reactor upon superhydrophobic pedestals. Soft Matter, 2012, 8, 631-635.	1.2	30
206	Underwater superoleophilicity to superoleophobicity: role of trapped air. Chemical Communications, 2012, 48, 11745.	2.2	67
207	Airâ€Grid Surface Patterning Provided by Superhydrophobic Surfaces. Small, 2012, 8, 962-965.	5 . 2	30
208	Fabrication of small organic luminogens honeycomb-structured films with aggregation-induced emission features. Journal of Materials Chemistry, 2012, 22, 15869.	6.7	29
209	Bioinspired Oil Strider Floating at the Oil/Water Interface Supported by Huge Superoleophobic Force. ACS Nano, 2012, 6, 5614-5620.	7.3	91
210	Small Molecular Nanowire Arrays Assisted by Superhydrophobic Pillar tructured Surfaces with High Adhesion. Advanced Materials, 2012, 24, 2780-2785.	11.1	76
211	Clam's Shell Inspired Highâ€Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity. Advanced Materials, 2012, 24, 3401-3405.	11.1	277
212	Fractal gold modified electrode for ultrasensitive thrombin detection. Nanoscale, 2012, 4, 3786.	2.8	35
213	Elaborate Positioning of Nanowire Arrays Contributed by Highly Adhesive Superhydrophobic Pillarâ€Structured Substrates. Advanced Materials, 2012, 24, 559-564.	11.1	87
214	Bio-inspired anisotropic micro/nano-surface from a natural stamp: grasshopper wings. Soft Matter, 2011, 7, 7973.	1.2	25
215	Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy and Environmental Science, 2011, 4, 2259.	15.6	168
216	Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter, 2011, 7, 5948.	1.2	203

#	Article	IF	CITATIONS
217	Bioinspired Colloidal Photonic Crystals with Controllable Wettability. Accounts of Chemical Research, 2011, 44, 405-415.	7.6	219
218	Converting AgCl nanocubes to sunlight-driven plasmonic AgCl : Ag nanophotocatalyst with high activity and durability. Journal of Materials Chemistry, 2011, 21, 11532.	6.7	75
219	Nano "Fly Paper―Technology for the Capture of Circulating Tumor Cells. Methods in Molecular Biology, 2011, 726, 141-150.	0.4	17
220	Utilizing superhydrophilic materials to manipulate oil droplets arbitrarily in water. Soft Matter, 2011, 7, 5144.	1.2	61
221	Fattyâ€Acid–Metalâ€lon Complexes as Multicolor Superhydrophobic Coating Materials. Chemistry - an Asian Journal, 2011, 6, 1757-1760.	1.7	23
222	Elaborate architecture of the hierarchical hen's eggshell. Nano Research, 2011, 4, 171-179.	5.8	34
223	A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Research, 2011, 4, 266-273.	5.8	72
224	"Clingingâ€Microdroplet―Patterning Upon Highâ€Adhesion, Pillarâ€Structured Silicon Substrates. Advanced Functional Materials, 2011, 21, 3297-3307.	7.8	61
225	Patterning Crystal Arrays: "Clinging-Microdroplet―Patterning Upon High-Adhesion, Pillar-Structured Silicon Substrates (Adv. Funct. Mater. 17/2011). Advanced Functional Materials, 2011, 21, n/a-n/a.	7.8	0
226	Functionalized Conducting Polymer Nanodots for Enhanced Cell Capturing: The Synergistic Effect of Capture Agents and Nanostructures. Advanced Materials, 2011, 23, 4788-4792.	11.1	164
227	Aptamerâ€Mediated Efficient Capture and Release of T Lymphocytes on Nanostructured Surfaces. Advanced Materials, 2011, 23, 4376-4380.	11.1	175
228	A Novel Superhydrophilic and Underwater Superoleophobic Hydrogelâ€Coated Mesh for Oil/Water Separation. Advanced Materials, 2011, 23, 4270-4273.	11.1	1,462
229	Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers. Angewandte Chemie - International Edition, 2011, 50, 3084-3088.	7.2	576
230	Cover Picture: Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers (Angew. Chem. Int. Ed. 13/2011). Angewandte Chemie - International Edition, 2011, 50, 2857-2857.	7.2	0
231	Highly effective protein detection for avidin–biotin system based on colloidal photonic crystals enhanced fluoroimmunoassay. Biosensors and Bioelectronics, 2011, 26, 2165-2170.	5.3	60
232	Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides. Materials, 2010, 3, 401-433.	1.3	51
233	Integrating Ionic Gate and Rectifier Within One Solidâ€State Nanopore via Modification with Dualâ€Responsive Copolymer Brushes. Advanced Functional Materials, 2010, 20, 3561-3567.	7.8	108
234	Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells. Angewandte Chemie - International Edition, 2010, 49, 3777-3781.	7.2	253

#	Article	IF	Citations
235	A differential cell capture assay for evaluating antibody interactions with cell surface targets. Analytical Biochemistry, 2010, 401, 173-181.	1.1	8
236	A Microfluidic Platform for Systems Pathology: Multiparameter Single-Cell Signaling Measurements of Clinical Brain Tumor Specimens. Cancer Research, 2010, 70, 6128-6138.	0.4	106
237	Two-Dimensional LDV Measurement, Modeling, and Optimal Design of Rectangular Primary Settling Tanks. Journal of Environmental Engineering, ASCE, 2010, 136, 501-507.	0.7	25
238	A Rapid Pathway Toward a Superb Gene Delivery System: Programming Structural and Functional Diversity into a Supramolecular Nanoparticle Library. ACS Nano, 2010, 4, 6235-6243.	7.3	122
239	A small library of DNA-encapsulated supramolecular nanoparticles for targeted gene delivery. Chemical Communications, 2010, 46, 1851-1853.	2.2	51
240	Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Advanced Materials, 2009, 21, 665-669.	11.1	1,123
241	Superoleophobic Surfaces: Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface (Adv. Mater. 6/2009). Advanced Materials, 2009, 21, NA-NA.	11.1	4
242	A Supramolecular Approach for Preparation of Sizeâ€Controlled Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 4344-4348.	7.2	172
243	Threeâ€Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells. Angewandte Chemie - International Edition, 2009, 48, 8970-8973.	7.2	462
244	Integrated microfluidic reactors. Nano Today, 2009, 4, 470-481.	6.2	115
245	A Hydrodynamically Focused Stream as a Dynamic Template for Siteâ€Specific Electrochemical Micropatterning of Conducting Polymers. Angewandte Chemie - International Edition, 2008, 47, 1072-1075.	7.2	31
246	Long-term and thermally stable superhydrophobic surfaces of carbon nanofibers. Journal of Colloid and Interface Science, 2008, 320, 365-368.	5.0	28
247	Facile Means of Preparing Superamphiphobic Surfaces on Common Engineering Metals. Journal of Physical Chemistry C, 2008, 112, 11454-11458.	1.5	173
248	Wettability Alteration of Polymer Surfaces Produced by Scraping. Journal of Adhesion Science and Technology, 2008, 22, 395-402.	1.4	69
249	Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Research, 2007, 35, e33.	6.5	73
250	Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology, 2007, 18, 015103.	1.3	137
251	Enthalpy-Driven Three-State Switching of a Superhydrophilic/Superhydrophobic Surface. Angewandte Chemie - International Edition, 2007, 46, 3915-3917.	7.2	168
252	Definition of Superhydrophobic States. Advanced Materials, 2007, 19, 3423-3424.	11.1	836

#	Article	IF	CITATIONS
253	Photoresponsive surfaces with controllable wettability. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2007, 8, 18-29.	5.6	253
254	c-2,t-4-Bis(2-benzoxazol-2-yl)-r-1,t-3-bis[4-(dimethylamino)phenyl]cyclobutane. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1171-o1172.	0.2	1
255	Time-Dependent Organization and Wettability of Decanethiol Self-Assembled Monolayer on Au(111) Investigated with STM. Journal of Physical Chemistry B, 2006, 110, 1794-1799.	1.2	39
256	Controlled Growth of Aligned Arrays of Cuâ^'Ferrite Nanorods. Crystal Growth and Design, 2006, 6, 1931-1935.	1.4	47
257	The preparation of a superhydrophilic carbon film from a superhydrophobic lotus leaf. Carbon, 2006, 44, 1848-1850.	5.4	19
258	Controlling Wettability and Photochromism in a Dual-Responsive Tungsten Oxide Film. Angewandte Chemie - International Edition, 2006, 45, 1264-1267.	7.2	207
259	Dual-Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity. Advanced Materials, 2006, 18, 432-436.	11.1	324
260	One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. Advanced Materials, 2006, 18, 767-770.	11.1	533
261	RECENT PROGRESS ON BIO-INSPIRED SURFACE WITH SPECIAL WETTABILITY. Annual Review of Nano Research, 2006, , 573-628.	0.2	9
262	Manipulation of Surface Wettability between Superhydrophobicity and Superhydrophilicity on Copper Films. ChemPhysChem, 2005, 6, 1475-1478.	1.0	145
263	Synthesis and Structure of an Unprecedented Layered Vanadate Complex Containing Double-Helical Chains: [{CollI(phen)2}2V8O23]. European Journal of Inorganic Chemistry, 2004, 2004, 1385-1388.	1.0	45
264	Hydrothermal synthesis and crystal structure of a new layered titanium vanadate decorated with organonitrogen ligand: [Ti(2,2′-bpy)V2O7]. Journal of Molecular Structure, 2004, 692, 107-114.	1.8	9
265	Hydrothermal synthesis and characterization of an unprecedented Î-type octamolybdate: [{Ni(phen)2}2(Mo8O26)]. Inorganica Chimica Acta, 2004, 357, 2525-2531.	1.2	73
266	A novel three-dimensional metal–organic network, Zn2(btec)(pipz)(H2O) (btec=1,2,4,5-benzenetetracarboxylate, pipz=piperazine), with blue fluorescent emission. Inorganica Chimica Acta, 2004, 357, 3155-3161.	1.2	53
267	A novel one-dimensional arsenic vanadate decorated with a transition metal complex: [Cu(2,2′-bpy)](VO2)(AsO4) (2,2′-bpy=2,2′-bipyridine). Journal of Molecular Structure, 2004, 689, 81-88.	1.8	10
268	A novel one-dimensional vanadium arsenate grafted with the directly coordinated organonitrogen ligands: [(VO)2(HAsO4)2(phen)2] (phen=phenanthroline). Inorganic Chemistry Communication, 2004, 7, 128-130.	1.8	13
269	Title is missing!. Transition Metal Chemistry, 2003, 28, 616-620.	0.7	15
270	Hydrothermal synthesis and crystal structure of a metal–organic coordination polymer with double-helical structure: [Fe(phen)(ipt)]n (ipt=isophthalate, phen=1,10-phenanthroline). Inorganic Chemistry Communication, 2003, 6, 1347-1349.	1.8	19

#	Article	IF	CITATIONS
271	A novel chain-like binuclear vanadium(V) coordination polymer containing mixed ligands: hydrothermal synthesis and crystal structure of [{VO2(2,2′-bipy)}2(tp)]∞ (tp=terephthalate). Inorganica Chimica Acta, 2003, 344, 257-261.	1.2	15
272	Hydrothermal synthesis, structure, and characterization of two one-dimensional chainlike hybrid complexes [(CuX)2(o-phen)]â^ž (X=Br, Cl; o-phen=o-phenanthroline). Inorganica Chimica Acta, 2003, 349, 123-127.	1.2	10
273	A layered vanadium arsenate network decorated with the directly coordinated organonitrogen ligands: [V4O7(HAsO4)2(o-phen)2] (o-phen=o-phenanthroline). Journal of Solid State Chemistry, 2003, 175, 146-151.	1.4	16
274	Hydrothermal synthesis and crystal structure of a three-dimensional vanadium tellurite V4Te4O18. Journal of Solid State Chemistry, 2003, 176, 159-164.	1.4	27
275	Hydrothermal synthesis and crystal structure of a novel polyoxomolybdate with the hydroxylated N-heterocycle ligand: Mo2O5(ophen)2 (Hophen=2-hydroxy-1,10-phenanthroline). Journal of Molecular Structure, 2003, 659, 13-21.	1.8	16
276	A novel organic-inorganic hybrid material with fluorescent emission: [Cd(PT)(H2O)]n(PT = phthalate). New Journal of Chemistry, 2003, 27, 1144-1147.	1.4	116
277	Two Novel Vanadium Tellurites Covalently Bonded with Metalâ 'Organic Complex Moieties: Â M(phen)V2TeO8(M = Cu, Ni). Inorganic Chemistry, 2003, 42, 7652-7657. A new α-Keggin type polyoxometalate coordinated to four silver complex moieties:	1.9	52
278	{PW9V3O4Ö[Ag(2,2â€2-bipy)]2[Ag2(2,2â€2-bipy)3]2}Electronic supplementary information (ESI) available: thermal ellipsoid plot of [Ag2(2,2â€2-bipy)3]2+, schematic representation of the molecular building blocks of 1, simplified 2-D representation of the supramolecular network of 1, IR spectra, XPS spectra and a TG curve for 1. See http://www.rsc.org/suppdata/dt/b2/b208531c/. Dalton Transactions, 2003, ,	1.6	130
279	233-235. The first polyoxoalkoxovanadium germanate anion with a novel cage-like structure: solvothermal synthesis and characterization. Dalton Transactions, 2003, , 519-520.	1.6	40
280	An Unusual Organic–Inorganic Chain-like Hybrid Complex [(CuCl)2(o-phen)]â^ž (o-phen=o-phenanthroline). Journal of Solid State Chemistry, 2002, 167, 402-406.	1.4	25
281	An Unusual Organic–Inorganic Chain-like Hybrid Complex [(CuCl)2(o-phen)]â^ž (o-phen=o-phenanthroline). Journal of Solid State Chemistry, 2002, 167, 402-406.	1.4	14
282	An organic–inorganic vanadium oxide with one-dimensional ladder-type structure: hydrothermal synthesis, structure and characterization of [V 4 O 10 (o -phen) 2]. Journal of Molecular Structure, 2002, 606, 175-180.	1.8	16
283	Synthesis, characterization and crystal structures of dibenzo-18-crown-6 sodium isopolytungstates. Journal of Molecular Structure, 2002, 607, 133-141.	1.8	41
284	A highly reduced polyoxoanion with phosphorus-centered alternate layers of Mo/V oxides, [PMo2VMo6VIV4IVO40(VIVO)2]9â^. Journal of Molecular Structure, 2002, 611, 185-191.	1.8	27