Steven J Fliesler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3620008/publications.pdf

Version: 2024-02-01

71102 85541 6,035 134 41 71 citations h-index g-index papers 138 138 138 6536 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	veglock 10	Tf 50 742 Td
2	Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Human Molecular Genetics, 2011, 20, 3161-3175.	2.9	157
3	Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Molecular Vision, 2006, 12, 1319-33.	1.1	145
4	The ins and outs of cholesterol in the vertebrate retina. Journal of Lipid Research, 2010, 51, 3399-3413.	4.2	123
5	Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Molecular Vision, 2006, 12, 1306-18.	1.1	122
6	Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4086-95.	7.1	116
7	Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Experimental Eye Research, 2014, 125, 30-40.	2.6	116
8	Gene delivery to mitotic and postmitotic photoreceptors <i>Via</i> compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB Journal, 2010, 24, 1178-1191.	0.5	108
9	Formation of 7-dehydrocholesterol-containing membrane rafts in vitro and in vivo, with relevance to the Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2004, 45, 347-355.	4.2	99
10	A Partial Structural and Functional Rescue of a Retinitis Pigmentosa Model with Compacted DNA Nanoparticles. PLoS ONE, 2009, 4, e5290.	2.5	93
11	Mechanism of Aminobisphosphonate Action: Characterization of Alendronate Inhibition of the Isoprenoid Pathway. Biochemical and Biophysical Research Communications, 1999, 266, 560-563.	2.1	91
12	Reducing acetylated tau is neuroprotective in brain injury. Cell, 2021, 184, 2715-2732.e23.	28.9	91
13	Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin Journal of Cell Biology, 1985, 100, 574-587.	5.2	89
14	The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Human Molecular Genetics, 2004, 13, 2075-2087.	2.9	87
15	Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. Journal of Cell Biology, 2006, 173, 59-68.	5.2	87
16	Cholesterol suppresses cellular TGF- \hat{l}^2 responsiveness: implications in atherogenesis. Journal of Cell Science, 2007, 120, 3509-3521.	2.0	85
17	The Cys214â†'Ser mutation in peripherin/rds causes a loss-of-function phenotype in transgenic mice. Biochemical Journal, 2005, 388, 605-613.	3.7	74
18	Photoreceptor-specific degeneration caused by tunicamycin. Nature, 1984, 311, 575-577.	27.8	68

#	Article	IF	CITATIONS
19	Development and characterization of a hypomorphic Smith–Lemli–Opitz syndrome mouse model and efficacy of simvastatin therapy. Human Molecular Genetics, 2006, 15, 839-851.	2.9	67
20	Impaired cone function and cone degeneration resulting from CNGB3 deficiency: down-regulation of CNGA3 biosynthesis as a potential mechanism. Human Molecular Genetics, 2009, 18, 4770-4780.	2.9	67
21	Tunicamycin blocks the incorporation of opsin into retinal rod outer segment membranes Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1116-1120.	7.1	64
22	Modulating Expression of Peripherin/rdsin Transgenic Mice: Critical Levels and the Effect of Overexpression., 2004, 45, 2514.		63
23	Onecut1 Is Essential for Horizontal Cell Genesis and Retinal Integrity. Journal of Neuroscience, 2013, 33, 13053-13065.	3.6	63
24	The unfolded protein response in retinal vascular diseases: Implications and therapeutic potential beyond protein folding. Progress in Retinal and Eye Research, 2015, 45, 111-131.	15. 5	61
25	Retinal Degeneration in a Rodent Model of Smith-Lemli-Opitz Syndrome. JAMA Ophthalmology, 2004, 122, 1190.	2.4	59
26	Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones. Human Molecular Genetics, 2009, 18, 797-808.	2.9	59
27	Novel oxysterols observed in tissues and fluids of AY9944-treated rats: a model for Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2011, 52, 1810-1820.	4.2	59
28	In vivo biosynthesis of cholesterol in the rat retina. FEBS Letters, 1993, 335, 234-238.	2.8	57
29	Peroxisome Deficiency Causes a Complex Phenotype because of Hepatic SREBP/Insig Dysregulation Associated with Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2009, 284, 7232-7245.	3.4	56
30	Evidence for a Circadian Rhythm of Susceptibility to Retinal Light Damageâ€Â¶. Photochemistry and Photobiology, 2002, 75, 547.	2.5	56
31	Disturbed Cholesterol Homeostasis in a Peroxisome-Deficient PEX2 Knockout Mouse Model. Molecular and Cellular Biology, 2004, 24, 1-13.	2.3	54
32	G-Protein $\hat{I}^2\hat{I}^3$ -Complex Is Crucial for Efficient Signal Amplification in Vision. Journal of Neuroscience, 2011, 31, 8067-8077.	3.6	54
33	Metabolism of [3H] Farnesol to Cholesterol and Cholesterogenic Intermediates in the Living Rat Eye. Biochemical and Biophysical Research Communications, 1995, 210, 695-702.	2.1	50
34	Lipid hydroperoxide formation in the retina: correlation with retinal degeneration and light damage in a rat model of Smith–Lemli–Opitz syndrome. Experimental Eye Research, 2006, 82, 538-541.	2.6	50
35	Loss of Caveolin-1 Impairs Retinal Function Due to Disturbance of Subretinal Microenvironment. Journal of Biological Chemistry, 2012, 287, 16424-16434.	3.4	50
36	Cholesterol-Dependent Association of Caveolin-1 with the Transducin α Subunit in Bovine Photoreceptor Rod Outer Segments:  Disruption by Cyclodextrin and Guanosine 5â€~-O-(3-Thiotriphosphate). Biochemistry, 2003, 42, 7892-7903.	2.5	49

#	Article	IF	CITATIONS
37	A comparison of the behavior of cholesterol and selected derivatives in mixed sterol–phospholipid Langmuir monolayers: a fluorescence microscopy study. Chemistry and Physics of Lipids, 2005, 136, 1-12.	3.2	49
38	lon-current-based Proteomic Profiling of the Retina in a Rat Model of Smith-Lemli-Opitz Syndrome. Molecular and Cellular Proteomics, 2013, 12, 3583-3598.	3.8	49
39	Outer Segment Oligomerization of Rds: Evidence from Mouse Models and Subcellular Fractionationâ€. Biochemistry, 2008, 47, 1144-1156.	2.5	46
40	Deletion of the p85 \hat{l} ± Regulatory Subunit of Phosphoinositide 3-Kinase in Cone Photoreceptor Cells Results in Cone Photoreceptor Degeneration., 2011, 52, 3775.		46
41	Rhodopsin: The Functional Significance of Asn-Linked Glycosylation and Other Post-Translational Modifications. Ophthalmic Genetics, 2009, 30, 109-120.	1.2	45
42	Lipidomic analysis of the retina in a rat model of Smith–Lemli–Opitz syndrome: alterations in docosahexaenoic acid content of phospholipid molecular species. Journal of Neurochemistry, 2008, 105, 1032-1047.	3.9	44
43	Loss of Caveolin-1 Causes Blood–Retinal Barrier Breakdown, Venous Enlargement, and Mural Cell Alteration. American Journal of Pathology, 2014, 184, 541-555.	3.8	43
44	Sterol composition of bovine retinal rod outer segment membranes and whole retinas. Lipids and Lipid Metabolism, 1982, 711, 138-148.	2.6	42
45	7-Dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith–Lemli–Opitz syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 877-883.	2.4	42
46	Insights into the mechanisms of macular degeneration associated with the R172W mutation in RDS. Human Molecular Genetics, 2014, 23, 3102-3114.	2.9	42
47	Early-Onset, Slow Progression of Cone Photoreceptor Dysfunction and Degeneration in CNG Channel Subunit CNGB3 Deficiency., 2011, 52, 3557.		41
48	In vivo requirement of protein prenylation for maintenance of retinal cytoarchitecture and photoreceptor structure Journal of Cell Biology, 1995, 130, 431-439.	5.2	40
49	A 42,000-Da protein in rabbit tissues and in a glycogen synthase preparation cross-reacts with antibodies to glycogenin. Archives of Biochemistry and Biophysics, 1988, 260, 628-637.	3.0	39
50	Photodamage Generates 7â€keto―and 7â€hydroxycholesterol in the Rat Retina <i>via</i> a Free Radicalâ€mediated Mechanism. Photochemistry and Photobiology, 2009, 85, 1116-1125.	2.5	39
51	Light-induced exacerbation of retinal degeneration in a rat model of Smith–Lemli–Opitz syndrome. Experimental Eye Research, 2006, 82, 496-504.	2.6	38
52	Isoprenoid metabolism in the vertebrate retina. International Journal of Biochemistry and Cell Biology, 1997, 29, 877-894.	2.8	37
53	Robust lysosomal calcium signaling through channel TRPML1 is impaired by lysosomal lipid accumulation. FASEB Journal, 2018, 32, 782-794.	0.5	36
54	Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome: Thinking Beyond Cholesterol Deficiency. Advances in Experimental Medicine and Biology, 2010, 664, 481-489.	1.6	35

#	Article	IF	CITATIONS
55	Cholesterol homeostasis in the vertebrate retina: biology and pathobiology. Journal of Lipid Research, 2021, 62, 100057.	4.2	34
56	Retinal abnormalities associated with the G90D mutation in opsin. Journal of Comparative Neurology, 2004, 478, 149-163.	1.6	33
57	Effect of Rds abundance on cone outer segment morphogenesis, photoreceptor gene expression, and outer limiting membrane integrity. Journal of Comparative Neurology, 2007, 504, 619-630.	1.6	32
58	Differential distribution of proteins and lipids in detergentâ€resistant and detergentâ€soluble domains in rod outer segment plasma membranes and disks. Journal of Neurochemistry, 2008, 104, 336-352.	3.9	32
59	Primary structure of frog rhodopsin. FEBS Letters, 1992, 313, 103-108.	2.8	31
60	Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 895-907.	2.4	31
61	Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Molecular Vision, 2002, 8, 333-40.	1.1	31
62	Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density. Experimental Eye Research, 2016, 145, 297-316.	2.6	30
63	Long-Term Functional and Structural Consequences of Primary Blast Overpressure to the Eye. Journal of Neurotrauma, 2018, 35, 2104-2116.	3.4	30
64	Partial Rescue of Retinal Function and Sterol Steady-State in a Rat Model of Smith-Lemli-Opitz Syndrome. Pediatric Research, 2007, 61, 273-278.	2.3	29
65	Glycosylation of rhodopsin is necessary for its stability and incorporation into photoreceptor outer segment discs. Human Molecular Genetics, 2015, 24, 2709-2723.	2.9	27
66	Identification and oligosaccharide structure analysis of rhodopsin glycoforms containing galactose and sialic acid. Glycobiology, 1993, 3, 365-380.	2.5	24
67	Alteration of retinal rod outer segment membrane fluidity in a rat model of Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2008, 49, 1488-1499.	4.2	24
68	Lack of proteinâ€tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy. European Journal of Neuroscience, 2010, 32, 1461-1472.	2.6	24
69	CNGA3 Deficiency Affects Cone Synaptic Terminal Structure and Function and Leads to Secondary Rod Dysfunction and Degeneration., 2012, 53, 1117.		24
70	Inhibition of oligosaccharide processing and membrane morphogenesis in retinal rod photoreceptor cells Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6435-6439.	7.1	23
71	Isoprenoid lipid metabolism in the retina: Dynamics of squalene and cholesterol incorporation and turnover in frog rod outer segment membranes. Experimental Eye Research, 1995, 60, 57-69.	2.6	23
72	Cholesterol synthesis in the vertebrate retina: Effects of U18666A on rat retinal structure, photoreceptor membrane assembly, and sterol metabolism and composition. Lipids, 2000, 35, 289-296.	1.7	23

#	Article	IF	Citations
73	Late-Onset Cone Photoreceptor Degeneration Induced by R172W Mutation in Rds and Partial Rescue by Gene Supplementation., 2007, 48, 5397.		23
74	Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome. Scientific Reports, 2018, 8, 1286.	3.3	23
75	Glycoprotein synthesis in the human retina: Localization of the lipid intermediate pathway. Experimental Eye Research, 1984, 39, 153-173.	2.6	22
76	In Vitro Metabolism of Mevalonic Acid in the Bovine Retina. Journal of Neurochemistry, 1986, 46, 448-460.	3.9	22
77	A comparison of the packing behavior of egg phosphatidylcholine with cholesterol and biogenically related sterols in Langmuir monolayer films. Chemistry and Physics of Lipids, 2009, 161, 22-31.	3.2	20
78	In Vitro Metabolic Competence of the Frog Retina: Effects of Glucose and Oxygen Deprivation. Experimental Eye Research, 1997, 64, 683-692.	2.6	19
79	Compromised phagosome maturation underlies RPE pathology in cell culture and whole animal models of Smith-Lemli-Opitz Syndrome. Autophagy, 2018, 14, 1796-1817.	9.1	19
80	Functional Peroxisomes Are Essential for Efficient Cholesterol Sensing and Synthesis. Frontiers in Cell and Developmental Biology, 2020, 8, 560266.	3.7	19
81	The effects of monensin on transport of membrane components in the frog retinal photoreceptor. I. Light microscopic autoradiography and biochemical analysis. Journal of Neuroscience, 1984, 4, 1086-1092.	3.6	18
82	Genetic Supplementation of RDS Alleviates a Loss-of-function Phenotype in C214S Model of Retinitis Pigmentosa. Advances in Experimental Medicine and Biology, 2008, 613, 129-138.	1.6	18
83	Retinal structure and function in an animal model that replicates the biochemical hallmarks of desmosterolosis. Neurochemical Research, 2000, 25, 685-694.	3.3	17
84	Mass spectrometryâ€based proteomics of oxidative stress: Identification of 4â€hydroxyâ€2â€nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins. Electrophoresis, 2016, 37, 2615-2623.	2.4	17
85	Lipids and lipid metabolism in the eye. Journal of Lipid Research, 2010, 51, 1-3.	4.2	16
86	<i>Cfh</i> Genotype Interacts With Dietary Glycemic Index to Modulate Age-Related Macular Degeneration-Like Features in Mice., 2014, 55, 492.		16
87	Reassessing the suitability of ARPE-19Âcells as a valid model of native RPE biology. Experimental Eye Research, 2022, 219, 109046.	2.6	16
88	Antioxidants: The Missing Key to Improved Therapeutic Intervention in Smith-Lemli-Opitz Syndrome. Hereditary Genetics: Current Research, 2013, 02, 119.	0.1	15
89	Tunicamycin-induced degeneration in cone photoreceptors. Visual Neuroscience, 1988, 1, 153-158.	1.0	14
90	Cholesterol homeostasis in the retina: seeing is believing. Journal of Lipid Research, 2015, 56, 1-4.	4.2	14

#	Article	IF	Citations
91	Retinal Degeneration Caused by Rod-Specific Dhdds Ablation Occurs without Concomitant Inhibition of Protein N-Glycosylation. IScience, 2020, 23, 101198.	4.1	14
92	N-linked oligosaccharides are not required for neuron-neuron interactions mediated by neural cell adhesion molecule. Neuroscience Letters, 1988, 93, 170-175.	2.1	12
93	Letter to the editor: Squalene is Localized to the Plasma Membrane in Bovine Retinal Rod Outer Segments. Experimental Eye Research, 1997, 64, 279-282.	2.6	12
94	Neural cell adhesion molecule (NCAM) in adult vertebrate retinas: Tissue localization and evidence against its role in retina-pigment epithelium adhesion. Experimental Eye Research, 1990, 50, 475-482.	2.6	11
95	Novel morphological changes in rat retina induced by intravitreal injection of lovastatin. Experimental Eye Research, 1992, 54, 149-152.	2.6	10
96	Oxysterols and Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome: Implications for an Improved Therapeutic Intervention. Molecules, 2018, 23, 2720.	3.8	10
97	Selective Ablation of Dehydrodolichyl Diphosphate Synthase in Murine Retinal Pigment Epithelium (RPE) Causes RPE Atrophy and Retinal Degeneration. Cells, 2020, 9, 771.	4.1	10
98	An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease. JCI Insight, 2021, 6, .	5.0	10
99	Differential Developmental Deficits in Retinal Function in the Absence of either Protein Tyrosine Sulfotransferase-1 or -2. PLoS ONE, 2012, 7, e39702.	2.5	10
100	Lipid-derived and other oxidative modifications of retinal proteins in a rat model of Smith-Lemli-Opitz syndrome. Experimental Eye Research, 2019, 178, 247-254.	2.6	9
101	Lack of Overt Retinal Degeneration in a K42E Dhdds Knock-In Mouse Model of RP59. Cells, 2020, 9, 896.	4.1	9
102	Monitoring basal autophagy in the retina utilizing CAG-mRFP-EGFP-MAP1LC3B reporter mouse: technical and biological considerations. Autophagy, 2022, 18, 1187-1201.	9.1	9
103	Catabolism of myo-Inositol to Precursors Utilized for De Novo Glycerolipid Biosynthesis. Journal of Neurochemistry, 1985, 44, 171-174.	3.9	8
104	The effect of inhibitors of glycoprotein synthesis and processing on the phagocytosis of rod outer segments by cultured retinal pigment epithelial cells. Glycobiology, 1990, 1, 51-61.	2.5	8
105	Enzyme blockade: a nonradioactive method to determine the absolute rate of cholesterol synthesis in the brain. Journal of Lipid Research, 2004, 45, 1952-1957.	4.2	8
106	Differential sensitivity of protein synthesis in human retina to a phosphodiesterase inhibitor and cyclic nucleotides. Current Eye Research, 1984, 3, 383-392.	1.5	7
107	Streamlined duplex live-dead microplate assay for cultured cells. Experimental Eye Research, 2017, 161, 17-29.	2.6	7
108	The Function of Oligomerization-Incompetent RDS in Rods. Advances in Experimental Medicine and Biology, 2010, 664, 39-46.	1.6	7

#	Article	IF	Citations
109	Lipid differences in rod outer segment membranes of rats with P23H and S334ter opsin mutations. Molecular Vision, 2005, 11 , 338-46.	1.1	7
110	Rethinking Grant Peer Review. Science, 1997, 275, 1399-0.	12.6	6
111	Glycogenesis in the amphibian retina: In vitro conversion of [2-3H]mannose to [3H]glucose and subsequent incorporation into glycogen. Experimental Eye Research, 1990, 51, 71-77.	2.6	5
112	Dependence of visual and cognitive outcomes on animal holder configuration in a rodent model of blast overpressure exposure. Vision Research, 2021, 188, 162-173.	1.4	5
113	Hepatic Isoprenoid Metabolism in a Rat Model of Smithâ€Lemliâ€Opitz Syndrome. Lipids, 2013, 48, 219-229.	1.7	4
114	Introduction to the Thematic Review Series: Seeing 2020: lipids and lipid-soluble molecules inÂtheÂeye. Journal of Lipid Research, 2021, 62, 100007.	4.2	4
115	In Vitro Biosynthetic Studies with Isolated Vertebrate Retinas. Methods in Neurosciences, 1993, 15, 86-107.	0.5	4
116	Richard W. Young: and the band marched on. Trends in Cell Biology, 1999, 9, 280-283.	7.9	3
117	Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2021, 62, 100002.	4.2	3
118	Worming our way toward multiple evolutionary origins of convergent sterol pathways. Journal of Lipid Research, 2020, 61, 129-132.	4.2	3
119	Evidence for a Circadian Rhythm of Susceptibility to Retinal Light Damageâ€Â¶. Photochemistry and Photobiology, 2007, 75, 547-553.	2.5	2
120	Retinal Degeneration and Cholesterol Deficiency. , 2014, , 287-297.		2
121	EDITORIAL: Special issue on the role of lipid and protein oxidation in retinal degenerations. Experimental Eye Research, 2019, 181, 313-315.	2.6	2
122	Transcriptomic Changes Associated with Loss of Cell Viability Induced by Oxysterol Treatment of a Retinal Photoreceptor-Derived Cell Line: An In Vitro Model of Smith–Lemli–Opitz Syndrome. International Journal of Molecular Sciences, 2021, 22, 2339.	4.1	2
123	Take Two Iron Chelators and Call Me in the Morning. Translational Vision Science and Technology, 2012, 1, 2a.	2.2	2
124	In vivo incorporation of [2-3H]-myo-inositol into frog opsin. Biochemical and Biophysical Research Communications, 1986, 136, 815-821.	2.1	1
125	Identification of \hat{l}^2 -galactosidase activity in purified bovine retinal rod outer segments. Current Eye Research, 1994, 13, 377-384.	1.5	1
126	What's In a Word?. American Journal of Ophthalmology, 2018, 188, xii-xiii.	3.3	1

STEVEN J FLIESLER

#	Article	IF	CITATIONS
127	Localization of the lipid intermediate pathway of protein glycosylation in oviduct cell types. Tissue and Cell, 1986, 18, 241-249.	2.2	0
128	Robert J. Ulshafer (1949–1990). Experimental Eye Research, 1991, 53, 139-140.	2.6	0
129	Eric Holtzman (1939–1994). Experimental Eye Research, 1995, 60, 1-2.	2.6	0
130	EDITOR'S PERSPECTIVE: On the verge of translation: Combined cholesterol-antioxidant supplementation as a potential therapeutic intervention for Smith-Lemli-Opitz syndrome. Experimental Eye Research, 2021, 202, 108390.	2.6	0
131	Effects of Cfh genotype and dietary glycemic index on ageâ€related macular degeneration in mice. FASEB Journal, 2013, 27, .	0.5	0
132	Dietary Glycemia Reversibly Contributes to Ageâ€related Macular Degeneration and Metabolic Disease in Aged C57Bl/6J Mice. FASEB Journal, 2015, 29, 136.4.	0.5	0
133	Retinal Degeneration Caused by Rod-Specific <i>Dhdds</i> Ablation Without Concomitant Inhibition of Protein <i>N</i> -Glycosylation. SSRN Electronic Journal, 0, , .	0.4	O
134	Gerard ("Jerryâ€) Anthony Lutty, PhD— In Memoriam (1947–2021). Experimental Eye Research, 2022, 216 108949.	.°2.6	0