Brandon Dugan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3619279/publications.pdf Version: 2024-02-01

RRANDON DUCAN

#	Article	IF	CITATIONS
1	Physical properties of hydrateâ€bearing sediments. Reviews of Geophysics, 2009, 47, .	23.0	746
2	New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 2014, 66, 176-185.	5.7	412
3	Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 2012, 41, 34-43.	5.7	394
4	Overpressure and Fluid Flow in the New Jersey Continental Slope: Implications for Slope Failure and Cold Seeps. Science, 2000, 289, 288-291.	12.6	263
5	Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE, 2017, 12, e0179079.	2.5	200
6	Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments. PLoS ONE, 2014, 9, e108340.	2.5	199
7	Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. Journal of Hydrology, 2016, 533, 461-472.	5.4	149
8	Origin and Extent of Fresh Paleowaters on the Atlantic Continental Shelf, USA. Ground Water, 2010, 48, 143-158.	1.3	116
9	Biochar physico-chemical properties as affected by environmental exposure. Science of the Total Environment, 2016, 563-564, 237-246.	8.0	110
10	Pleistocene hydrogeology of the Atlantic continental shelf, New England. Bulletin of the Geological Society of America, 2003, 115, 1324.	3.3	107
11	Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth and Planetary Science Letters, 2008, 269, 309-325.	4.4	105
12	Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. Journal of Geophysical Research, 2009, 114, .	3.3	99
13	Slow slip source characterized by lithological and geometric heterogeneity. Science Advances, 2020, 6, eaay3314.	10.3	95
14	Extending NMR data for permeability estimation in fine-grained sediments. Marine and Petroleum Geology, 2009, 26, 1419-1427.	3.3	92
15	Overpressure and earthquake initiated slope failure in the Ursa region, northern Gulf of Mexico. Journal of Geophysical Research, 2010, 115, .	3.3	85
16	Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: A numerical modeling perspective. Journal of Geophysical Research, 2011, 116, .	3.3	83
17	Offshore sediment overpressures of passive margins: Mechanisms, measurement, and models. Reviews of Geophysics, 2012, 50, .	23.0	70
18	Fluid flow and stability of the US continental slope offshore New Jersey from the Pleistocene to the present. Geofluids, 2002, 2, 137-146.	0.7	68

#	Article	IF	CITATIONS
19	Controls on the size and geometry of landslides: Insights from discrete element numerical simulations. Geomorphology, 2014, 220, 104-113.	2.6	67
20	Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes. Numerische Mathematik, 2007, 307, 861-900.	1.4	65
21	Origin and evolution of fractureâ€hosted methane hydrate deposits. Journal of Geophysical Research, 2010, 115, .	3.3	60
22	Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science, 2017, 356, 841-844.	12.6	57
23	Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3â€D seismic data, offshore midâ€Norway. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	53
24	Permeability anisotropy and fabric development: A mechanistic explanation. Water Resources Research, 2011, 47, .	4.2	51
25	Permeabilityâ€porosity relationships of shallow mudstones in the Ursa Basin, northern deepwater Gulf of Mexico. Journal of Geophysical Research, 2012, 117, .	3.3	47
26	The impact of lithologic heterogeneity and focused fluid flow upon gas hydrate distribution in marine sediments. Journal of Geophysical Research: Solid Earth, 2014, 119, 6705-6732.	3.4	46
27	Sulfateâ€methane transition as a proxy for average methane hydrate saturation in marine sediments. Geophysical Research Letters, 2008, 35, .	4.0	45
28	Capillary controls on methane hydrate distribution and fracturing in advective systems. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	45
29	An improved technique for computing permeability from NMR measurements in mudstones. Journal of Geophysical Research, 2011, 116, .	3.3	38
30	lce sheet–derived submarine groundwater discharge on Greenland's continental shelf. Water Resources Research, 2011, 47, .	4.2	38
31	Petrophysical and consolidation behavior of mass transport deposits from the northern Gulf of Mexico, IODP Expedition 308. Marine Geology, 2012, 315-318, 98-107.	2.1	38
32	Erratum to "Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico" [Earth and Planetary Science Letters 269/3-4 (2008) 309-32]. Earth and Planetary Science Letters 2008 274 269-283	4.4	37
33	Transient hydraulic fracturing and gas release in methane hydrate settings: A case study from southern Hydrate Ridge. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	37
34	Nearâ€seafloor overpressure in the deepwater Mississippi Canyon, northern Gulf of Mexico. Geophysical Research Letters, 2008, 35, .	4.0	34
35	Characterization of the Rapanui massâ€transport deposit and the basal shear zone: Mount Messenger Formation, Taranaki Basin, New Zealand. Sedimentology, 2020, 67, 2111-2148. 	3.1	31
36	Offshore Freshened Groundwater in Continental Margins. Reviews of Geophysics, 2021, 59, e2020RG000706.	23.0	31

#	Article	IF	CITATIONS
37	Physical properties of sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico gas hydrate drilling program. Marine and Petroleum Geology, 2008, 25, 896-905.	3.3	30
38	Use of a vertical δ18O profile to constrain hydraulic properties and recharge rates across a glacio-lacustrine unit, Nantucket Island, Massachusetts, USA. Hydrogeology Journal, 2012, 20, 325-336.	2.1	30
39	Sedimentology, stratigraphy and architecture of the Nicobar Fan (Bengal–Nicobar Fan System), Indian Ocean: Results from International Ocean Discovery Program Expedition 362. Sedimentology, 2020, 67, 2248-2281.	3.1	28
40	Overpressure and consolidation near the seafloor of Brazosâ€Trinity Basin IV, northwest deepwater Gulf of Mexico. Journal of Geophysical Research, 2009, 114, .	3.3	26
41	Analytical theory relating the depth of the sulfateâ€methane transition to gas hydrate distribution and saturation. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	25
42	Data report: consolidation characteristics of sediments from IODP Expedition 308, Ursa Basin, Gulf of Mexico. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	24
43	Effects of multiphase methane supply on hydrate accumulation and fracture generation. Geophysical Research Letters, 2010, 37, .	4.0	23
44	Consolidation, effective stress, and fluid pressure of sediments from ODP Site 1073, US mid-Atlantic continental slope. Earth and Planetary Science Letters, 2003, 215, 13-26.	4.4	20
45	Expedition 372B/375 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	20
46	Influence of late <scp>P</scp> leistocene glaciations on the hydrogeology of the continental shelf offshore <scp>M</scp> assachusetts, <scp>USA</scp> . Geochemistry, Geophysics, Geosystems, 2014, 15, 4651-4670.	2.5	19
47	Expedition 362 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	19
48	Fluid flow in the Keathley Canyon 151 Mini-Basin, northern Gulf of Mexico. Marine and Petroleum Geology, 2008, 25, 919-923.	3.3	18
49	Effect of environmental exposure on charcoal density and porosity in a boreal forest. Science of the Total Environment, 2017, 592, 316-325.	8.0	18
50	Effect of freeze-thaw cycling on grain size of biochar. PLoS ONE, 2018, 13, e0191246.	2.5	18
51	Expedition 372B/375 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	18
52	Site U1520. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	18
53	Geophysical evidence of a late Pleistocene glaciation and paleo-ice stream on the Atlantic Continental Shelf offshore Massachusetts, USA. Marine Geology, 2012, 303-306, 63-74.	2.1	17
54	Origin of a zone of anomalously high porosity in the subduction inputs to Nankai Trough. Marine Geology, 2015, 361, 147-162.	2.1	17

#	Article	IF	CITATIONS
55	Sedimentation Controls on Methaneâ€Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Margin. Geochemistry, Geophysics, Geosystems, 2019, 20, 4906-4921.	2.5	17
56	Data report: permeability, compressibility, stress state, and grain size of shallow sediments from Sites C0004, C0006, C0007, and C0008 of the Nankai accretionary complex. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	17
57	Data report: permeability, consolidation, stress state, and pore system characteristics of sediments from Sites C0011, C0012, and C0018 of the Nankai Trough. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	17
58	Integrating geophysical, hydrochemical, and hydrologic data to understand the freshwater resources on Nantucket Island, Massachusetts. Geophysical Monograph Series, 2007, , 143-159.	0.1	16
59	Site U1518. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	16
60	The Eastern North American Margin Community Seismic Experiment: An Amphibious Active―and Passiveâ€Source Dataset. Seismological Research Letters, 2020, 91, 533-540.	1.9	15
61	Site U1517. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	14
62	Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling. , 2008, , .		12
63	Expedition 362 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	12
64	Glacially generated overpressure on the New England continental shelf: Integration of fullâ€waveform inversion and overpressure modeling. Journal of Geophysical Research: Solid Earth, 2014, 119, 3393-3409.	3.4	11
65	Pore size controls on the base of the methane hydrate stability zone in the Kumano Basin, offshore Japan. Geophysical Research Letters, 2014, 41, 8021-8028.	4.0	11
66	History of Pore Pressure Build Up and Slope Instability in Mud-Dominated Sediments of Ursa Basin, Gulf of Mexico Continental Slope. , 2010, , 179-190.		11
67	Site U1519. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	11
68	Data report: strength characteristics of sediments from IODP Expedition 308, Sites U1322 and U1324. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	10
69	Hydraulic and Poroelastic Rock Properties From Oscillating Pore Pressure Experiments. Journal of Geophysical Research: Solid Earth, 2019, 124, 4473-4491.	3.4	9
70	Physical Properties of Mass Transport Complexes in the Ursa Region, Northern Gulf of Mexico (IODP) Tj ETQqO	0 0 rgBT /C	Overlock 10 Tf
71	The influence of clay content on submarine slope failure: insights from laboratory experiments and numerical models. Geological Society Special Publication, 2020, 500, 301-309.	1.3	8

Recursive Failure Of The Gulf Of Mexico Continental Slope: Timing And Causes. , 2007, , 209-219.

8

3

#	Article	IF	CITATIONS
73	Site U1480. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	8
74	Data report: permeability of sediments from Sites C0011 and C0012, NanTroSEIZE Stage 2: subduction inputs. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	8
75	Investigating the Basal Shear Zone of the Submarine Tuaheni Landslide Complex, New Zealand: A Coreâ€Logâ€Seismic Integration Study. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	8
76	Microstructural Evolution of Porosity and Stress During the Formation of Brittle Shear Fractures: A Discrete Element Model Study. Journal of Geophysical Research: Solid Earth, 2018, 123, 2228-2245.	3.4	7
77	Data report: penetrometer measurements of in situ temperature and pressure, IODP Expedition 308. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	7
78	Injection of desalination brine into the saline part of the coastal aquifer; environmental and hydrological implications. Water Research, 2021, 207, 117820.	11.3	7
79	Integrated geophysical investigation for understanding agriculturally induced landslides in southern Peru. Environmental Earth Sciences, 2022, 81, .	2.7	7
80	The New Jersey margin: compaction and fluid flow. Journal of Geochemical Exploration, 2000, 69-70, 477-481.	3.2	6
81	Expedition 372A summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	6
82	Scaling of Thermodynamic and Transport Processes for Predicting Methane Hydrate Saturation in Marine Sediments Worldwide. , 2006, , .		5
83	Lateral Variations in Core, Log, and Seismic Attributes of a Mass Transport Complex in the Ursa Region, IODP Expedition 308, Northern Gulf of Mexico. , 2007, , .		5
84	Data report: clay mineral assemblages within and beneath the Tuaheni Landslide Complex, IODP Expedition 372A Site U1517, offshore New Zealand. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5
85	Porosityâ€Permeability Relationships in Mudstone from Poreâ€Scale Fluid Flow Simulations using the Lattice Boltzmann Method. Water Resources Research, 2019, 55, 7060-7071.	4.2	4
86	Numerical Simulation of Oscillating Pore Pressure Experiments and Inversion for Permeability. Water Resources Research, 2020, 56, e2019WR025681.	4.2	4
87	Origin of Overpressure and Slope Failure in the Ursa Region, Northern Gulf of Mexico. , 2010, , 167-178.		4
88	Seismic waveform tomography with multicomponent data at a groundwater contamination site. , 2009, , .		4
89	Site U1481. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4

90 A Review of Overpressure, Flow Focusing, and Slope Failure. , 2012, , 267-276.

6

#	Article	IF	CITATIONS
91	Assessing the sealing quality of submarine mass transport complexes and deposits. Marine and Petroleum Geology, 2022, 143, 105748.	3.3	3
92	Data Report: Compressibility, Permeability, and Grain Size of Shallow Sediments, Sites 1194 and 1198. , 0, , .		2
93	Expedition 372A methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
94	Late Miocene wood recovered in Bengal–Nicobar submarine fan sediments by IODP Expedition 362. Scientific Drilling, 0, 27, 49-52.	0.6	2
95	Reply to comment by Chen et al. on "Controls on the size and geometry of landslides: Insights from discrete element numerical simulations― Geomorphology, 2016, 253, 551-552.	2.6	1
96	Effects of stress on failure behaviour of shallow-marine muds from the northern Gulf of Mexico. Geological Society Special Publication, 2019, 477, 523-536.	1.3	1
97	Reply to Comments by N. Sultan on "Sedimentation Controls on Methaneâ€Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Marginâ€: Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009005.	2.5	1