Zuzana Macek Jilkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3618310/publications.pdf

Version: 2024-02-01

49 papers

2,332 citations

257450 24 h-index 223800 46 g-index

53 all docs 53 docs citations

53 times ranked

3377 citing authors

#	Article	IF	CITATIONS
1	GNS561, a clinical-stage PPT1 inhibitor, is efficient against hepatocellular carcinoma <i>via</i> modulation of lysosomal functions. Autophagy, 2022, 18, 678-694.	9.1	30
2	Immunomodulation for hepatocellular carcinoma therapy: current challenges. Current Opinion in Oncology, 2022, 34, 155-160.	2.4	8
3	Gamma delta T cells in hepatocellular carcinoma: Sunrise of new therapy based on VÎ 2 T cells?. Clinical and Translational Medicine, 2022, 12, e834.	4.0	2
4	Chronic Intermittent Hypoxia Increases Cell Proliferation in Hepatocellular Carcinoma. Cells, 2022, 11, 2051.	4.1	7
5	GNS561, a New Autophagy Inhibitor Active against Cancer Stem Cells in Hepatocellular Carcinoma and Hepatic Metastasis from Colorectal Cancer. Journal of Cancer, 2021, 12, 5432-5438.	2.5	9
6	Targeting Akt in Hepatocellular Carcinoma and Its Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 1794.	4.1	27
7	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	27.8	649
8	Modeling Diet-Induced NAFLD and NASH in Rats: A Comprehensive Review. Biomedicines, 2021, 9, 378.	3.2	27
9	Clinical and Experimental Evaluation of Diagnostic Significance of Alpha-Fetoprotein and Osteopontin at the Early Stage of Hepatocellular Cancer. Bulletin of Experimental Biology and Medicine, 2021, 170, 340-344.	0.8	4
10	Increased Intrahepatic Expression of Immune Checkpoint Molecules in Autoimmune Liver Disease. Cells, 2021, 10, 2671.	4.1	6
11	DEN-Induced Rat Model Reproduces Key Features of Human Hepatocellular Carcinoma. Cancers, 2021, 13, 4981.	3.7	30
12	The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Frontiers in Immunology, 2021, 12, 791081.	4.8	37
13	Predictive Factors for Hepatocellular Carcinoma Development after Direct-Acting Antiviral Treatment of HCV. Livers, 2021, 1, 313-321.	1.9	2
14	Reply to Comment on "Jilkova, Z.M.; et al. Predictive Factors for Response to PD-1/PD-L1 Checkpoint Inhibition in the Field of Hepatocellular Carcinoma: Current Status and Challenges―Cancers 2019, 11, 1554. Cancers, 2020, 12, 2673.	3.7	4
15	Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2020, 21, 5250.	4.1	12
16	GNS561 acts as a potent anti-fibrotic and pro-fibrolytic agent in liver fibrosis through TGF- \hat{l}^21 inhibition. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232094204.	2.5	9
17	Circulating IL-13 Is Associated with De Novo Development of HCC in HCV-Infected Patients Responding to Direct-Acting Antivirals. Cancers, 2020, 12, 3820.	3.7	7
18	Percutaneous Ablation-Induced Immunomodulation in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2020, 21, 4398.	4.1	26

#	Article	IF	Citations
19	Predictive Factors for Response to PD-1/PD-L1 Checkpoint Inhibition in the Field of Hepatocellular Carcinoma: Current Status and Challenges. Cancers, 2019, 11, 1554.	3.7	73
20	Animal Models of Hepatocellular Carcinoma: The Role of Immune System and Tumor Microenvironment. Cancers, 2019, 11, 1487.	3.7	47
21	Immunologic Features of Patients With Advanced Hepatocellular Carcinoma Before and During Sorafenib or Anti-programmed Death-1/Programmed Death-L1 Treatment. Clinical and Translational Gastroenterology, 2019, 10, e00058.	2.5	38
22	Abstract 3717: Animal model of cirrhosis with hepatocellular carcinoma: A reliable tool for testing new therapies. , $2019, \dots$		0
23	A study of serum miRNA-122 in hepatitis C and associated hepatocellular carcinoma. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2019, 74, 388-395.	0.6	0
24	Abstract 3717: Animal model of cirrhosis with hepatocellular carcinoma: A reliable tool for testing new therapies. , 2019 , , .		0
25	Combination of AKT inhibitor ARQ 092 and sorafenib potentiates inhibition of tumor progression in cirrhotic rat model of hepatocellular carcinoma. Oncotarget, 2018, 9, 11145-11158.	1.8	30
26	Efficacy of AKT Inhibitor ARQ 092 Compared with Sorafenib in a Cirrhotic Rat Model with Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2017, 16, 2157-2165.	4.1	22
27	Effect of novel AKT inhibitor ARQ 751 as single agent and its combination with sorafenib on hepatocellular carcinoma in a cirrhotic rat model. Journal of Hepatology, 2017, 66, S459-S460.	3.7	3
28	Sex Differences in Spontaneous Degranulation Activity of Intrahepatic Natural Killer Cells during Chronic Hepatitis B: Association with Estradiol Levels. Mediators of Inflammation, 2017, 2017, 1-5.	3.0	12
29	Abstract 5124: GNS561 a new quinoline derivative inhibits the growth of hepatocellular carcinoma in a cirrhotic rat and human PDX orthotopic mouse models. , 2017, , .		0
30	Progression of fibrosis in patients with chronic viral hepatitis is associated with <scp>lL</scp> â€17 ⁺ neutrophils. Liver International, 2016, 36, 1116-1124.	3.9	30
31	CCM proteins control endothelial \hat{l}^21 integrin dependent response to shear stress. Biology Open, 2014, 3, 1228-1235.	1.2	40
32	Adipose tissue-related proteins locally associated with resolution of inflammation in obese mice. International Journal of Obesity, 2014, 38, 216-223.	3.4	6
33	Lymphocytes Degranulation in Liver in Hepatitis C Virus Carriers Is Associated With IFNL4 Polymorphisms and ALT Levels. Journal of Infectious Diseases, 2014, 209, 1907-1915.	4.0	22
34	Functions of Liver Natural Killer Cells Are Dependent on the Severity of Liver Inflammation and Fibrosis in Chronic Hepatitis C. PLoS ONE, 2014, 9, e95614.	2.5	23
35	Wall shear stress and endothelial cells dysfunction in the context of abdominal aortic aneurysms. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 27-29.	1.6	8
36	Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids. PLoS ONE, 2012, 7, e38834.	2.5	188

#	Article	lF	CITATIONS
37	Type I iodothyronine 5′-deiodinase mRNA and activity is increased in adipose tissue of obese subjects. International Journal of Obesity, 2012, 36, 320-324.	3.4	61
38	Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. International Journal of Obesity, 2012, 36, 262-272.	3.4	140
39	Unmasking Differential Effects of Rosiglitazone and Pioglitazone in the Combination Treatment with n-3 Fatty Acids in Mice Fed a High-Fat Diet. PLoS ONE, 2011, 6, e27126.	2.5	43
40	Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia, 2011, 54, 2626-2638.	6.3	93
41	The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice. Lipids in Health and Disease, 2011, 10, 128.	3.0	35
42	Perinatal programming of body weight control by leptin: putative roles of AMP kinase and muscle thermogenesis. American Journal of Clinical Nutrition, 2011, 94, S1830-S1837.	4.7	30
43	AMP-activated Protein Kinase $\hat{l}\pm 2$ Subunit Is Required for the Preservation of Hepatic Insulin Sensitivity by n-3 Polyunsaturated Fatty Acids. Diabetes, 2010, 59, 2737-2746.	0.6	74
44	Modulation of Type I Iodothyronine 5'-Deiodinase Activity in white Adipose Tissue by Nutrition: Possible Involvement of Leptin. Physiological Research, 2010, 59, 561-569.	0.9	35
45	n-3 Fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia, 2009, 52, 941-951.	6.3	128
46	Prevention and Reversal of Obesity and Glucose Intolerance in Mice by DHA Derivatives. Obesity, 2009, 17, 1023-1031.	3.0	59
47	<i> $>$ n $<$ i> $>$ -3 PUFA: bioavailability and modulation of adipose tissue function. Proceedings of the Nutrition Society, 2009, 68, 361-369.	1.0	118
48	Induction of muscle thermogenesis by high-fat diet in mice: association with obesity-resistance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E356-E367.	3.5	64
49	Investigation of osteoprotegerin interactions with ligands and antibodies using piezoelectric biosensors. Biosensors and Bioelectronics, 2005, 20, 2027-2034.	10.1	10