

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3617756/publications.pdf Version: 2024-02-01

CHAOLI

#	Article	IF	CITATIONS
1	A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosensors and Bioelectronics, 2019, 142, 111531.	10.1	137
2	Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chemical Science, 2016, 7, 3011-3016.	7.4	101
3	Enhanced Charge Transfer by Gold Nanoparticle at DNA Modified Electrode and Its Application to Label-Free DNA Detection. ACS Applied Materials & Interfaces, 2014, 6, 7579-7584.	8.0	100
4	Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chemical Science, 2018, 9, 979-984.	7.4	100
5	Design of Metal–Organic Framework-Based Nanoprobes for Multicolor Detection of DNA Targets with Improved Sensitivity. Analytical Chemistry, 2018, 90, 9929-9935.	6.5	67
6	Simple electrochemical sensing of attomolar proteins using fabricated complexes with enhanced surface binding avidity. Chemical Science, 2015, 6, 4311-4317.	7.4	63
7	Aptamer-Linked CRISPR/Cas12a-Based Immunoassay. Analytical Chemistry, 2021, 93, 3209-3216.	6.5	62
8	An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy. Biosensors and Bioelectronics, 2019, 126, 543-550.	10.1	61
9	Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Analytica Chimica Acta, 2014, 831, 60-64.	5.4	59
10	Colorimetric assay for protein detection based on "nano-pumpkin―induced aggregation of peptide-decorated gold nanoparticles. Biosensors and Bioelectronics, 2015, 71, 348-352.	10.1	52
11	Functionalization of Covalent Organic Frameworks with DNA via Covalent Modification and the Application to Exosomes Detection. Analytical Chemistry, 2022, 94, 5055-5061.	6.5	46
12	Proximity ligation-induced assembly of DNAzymes for simple and cost-effective colourimetric detection of proteins with high sensitivity. Chemical Communications, 2016, 52, 5633-5636.	4.1	43
13	Nanotechnology Strategies for Plant Genetic Engineering. Advanced Materials, 2022, 34, e2106945.	21.0	40
14	Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chemical Communications, 2016, 52, 7850-7853.	4.1	39
15	One-Step Modification of Electrode Surface for Ultrasensitive and Highly Selective Detection of Nucleic Acids with Practical Applications. Analytical Chemistry, 2016, 88, 7583-7590.	6.5	34
16	Lighting Up CircRNA Using a Linear DNA Nanostructure. Analytical Chemistry, 2020, 92, 12394-12399.	6.5	34
17	Conjugation of Graphene Oxide with DNAâ€Modified Gold Nanoparticles to Develop a Novel Colorimetric Sensing Platform. Particle and Particle Systems Characterization, 2014, 31, 201-208.	2.3	31
18	Electrochemical detection of circRNAs based on the combination of back-splice junction and duplex-specific nuclease. Sensors and Actuators B: Chemical, 2020, 302, 127166.	7.8	29

Chao Li

#	Article	IF	CITATIONS
19	Biocatalytic CsPbX ₃ Perovskite Nanocrystals: A Selfâ€Reporting Nanoprobe for Metabolism Analysis. Small, 2021, 17, e2103255.	10.0	28
20	A pH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta, 2019, 192, 325-330.	5.5	27
21	An electrochemical sensor for Oct4 detection in human tissue based on target-induced steric hindrance effect on a tetrahedral DNA nanostructure. Biosensors and Bioelectronics, 2019, 127, 194-199.	10.1	26
22	Individual Cloud-Based Fingerprint Operation Platform for Latent Fingerprint Identification Using Perovskite Nanocrystals as Eikonogen. ACS Applied Materials & Interfaces, 2020, 12, 13494-13502.	8.0	26
23	Precise Molecular Profiling of Circulating Exosomes Using a Metal–Organic Framework-Based Sensing Interface and an Enzyme-Based Electrochemical Logic Platform. Analytical Chemistry, 2022, 94, 875-883.	6.5	26
24	<i>In Vitro</i> Analysis of DNA–Protein Interactions in Gene Transcription Using DNAzyme-Based Electrochemical Assay. Analytical Chemistry, 2017, 89, 5003-5007.	6.5	25
25	Homogenous Electrochemical Method for Ultrasensitive Detection of Tumor Cells Designed by Introduction of Poly(A) Tails onto Cell Membranes. Analytical Chemistry, 2020, 92, 2194-2200.	6.5	25
26	Fabrication of hand-in-hand nanostructure for one-step protein detection. Chemical Communications, 2013, 49, 3760.	4.1	24
27	An Array-Based Approach to Determine Different Subtype and Differentiation of Non-Small Cell Lung Cancer. Theranostics, 2015, 5, 62-70.	10.0	22
28	A reusable electrochemical sensor for one-step biosensing in complex media using triplex-forming oligonucleotide coupled DNA nanostructure. Analytica Chimica Acta, 2019, 1055, 90-97.	5.4	21
29	A soft metal-polyphenol capsule-based ultrasensitive immunoassay for electrochemical detection of Epstein-Barr (EB) virus infection. Biosensors and Bioelectronics, 2020, 164, 112310.	10.1	20
30	Co–N–C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Analytical and Bioanalytical Chemistry, 2022, 414, 1857-1865.	3.7	20
31	Engineering DNA/Fe–N–C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Analytica Chimica Acta, 2021, 1180, 338856.	5.4	19
32	Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano, 2022, 16, 9019-9030.	14.6	16
33	A dual-readout sandwich immunoassay based on biocatalytic perovskite nanocrystals for detection of prostate specific antigen. Biosensors and Bioelectronics, 2022, 203, 113979.	10.1	15
34	Electrochemical detection of Nanog in cell extracts via target-induced resolution of an electrode-bound DNA pseudoknot. Biosensors and Bioelectronics, 2016, 86, 933-938.	10.1	11
35	Development of a two-in-one integrated assay for the analysis of circRNA-microRNA interactions. Biosensors and Bioelectronics, 2021, 178, 113032.	10.1	11
36	Coupling of an antifouling and reusable nanoplatform with catalytic hairpin assembly for highly sensitive detection of nucleic acids using zeta potential as signal readout. Sensors and Actuators B: Chemical, 2021, 326, 128845.	7.8	10

Chao Li

#	Article	IF	CITATIONS
37	Electrochemical detection of DNA 3′-phosphatases based on surface-extended DNA nanotail strategy. Analytica Chimica Acta, 2016, 924, 29-34.	5.4	9
38	Simple and fast screening of G-quadruplex ligands with electrochemical detection system. Talanta, 2016, 160, 144-147.	5.5	9
39	Design of a stretchable DNAzyme for sensitive and multiplexed detection of antibodies. Analytica Chimica Acta, 2018, 1041, 102-107.	5.4	9
40	A pH-responsive bioassay for sensitive colorimetric detection of adenosine triphosphate based on switchable DNA aptamer and metal ion–urease interactions. Analytical and Bioanalytical Chemistry, 2021, 413, 1533-1540.	3.7	7
41	Ferric Ions as a Catalytic Mediator in Metalâ€EGCG Network for Bactericidal Effect and Pathogenic Biofilm Eradication at Physiological pH. Advanced Materials Interfaces, 2021, 8, 2101605.	3.7	7
42	Glutathione-Sensitive Nanoglue Platform with Effective Nucleic Acids Gluing onto Liposomes for Photo-Gene Therapy. ACS Applied Materials & Interfaces, 2022, 14, 25126-25134.	8.0	7
43	Assembly of Nanoconjugates as New Kind Inhibitor of the Aggregation of Amyloid Peptides Associated with Alzheimer's Disease. Particle and Particle Systems Characterization, 2018, 35, 1700384.	2.3	6
44	A homogeneous, Anti-dsDNA antibody-based assay for multicolor detection of cancer stem cell transcription factors. Analytica Chimica Acta, 2018, 1029, 72-77.	5.4	6
45	Erythrocyte membrane-biointerfaced spherical nucleic acids: Robust performance for microRNA quantification. Analytica Chimica Acta, 2019, 1080, 189-195.	5.4	6
46	Coating a DNA self-assembled monolayer with a metal organic framework-based exoskeleton for improved sensing performance. Analyst, The, 2019, 144, 3539-3545.	3.5	6
47	A zeta potential-based homogeneous assay for amplified detection of telomerase in cancer cells. Sensors and Actuators B: Chemical, 2022, 350, 130881.	7.8	5
48	Flexible regulation of DNA displacement reaction through nucleic acid-recognition enzyme and its application in keypad lock system and biosensing. Scientific Reports, 2017, 7, 10017.	3.3	4
49	Dynamic sandwich-type electrochemical assay for protein quantification and protein–protein interaction. Analyst, The, 2017, 142, 4399-4404.	3.5	4
50	A highly sensitive, dual-readout assay based on self-assembly of two functional nanoparticles for homogeneous detection of protein biomarkers. Sensors and Actuators B: Chemical, 2021, 348, 130710.	7.8	4
51	A novel method to engineer proteases for selective enzyme inhibition. Chemical Communications, 2019, 55, 14039-14042.	4.1	2